inode.c 174 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23
24
25
26
27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29
30
31
32
33
34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38
39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include <linux/workqueue.h>
41
#include <linux/kernel.h>
42
#include <linux/slab.h>
43

44
#include "ext4_jbd2.h"
45
46
#include "xattr.h"
#include "acl.h"
47
#include "ext4_extents.h"
48

49
50
#include <trace/events/ext4.h>

51
52
#define MPAGE_DA_EXTENT_TAIL 0x01

53
54
55
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
56
57
58
59
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
60
61
}

62
63
static void ext4_invalidatepage(struct page *page, unsigned long offset);

64
65
66
/*
 * Test whether an inode is a fast symlink.
 */
67
static int ext4_inode_is_fast_symlink(struct inode *inode)
68
{
69
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
70
71
72
73
74
75
76
77
78
79
80
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
81
	ext4_lblk_t needed;
82
83
84
85
86
87

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
88
	 * like a regular file for ext4 to try to delete it.  Things
89
90
91
92
93
94
95
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
96
97
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
98

99
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

116
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
117
118
119
	if (!IS_ERR(result))
		return result;

120
	ext4_std_error(inode->i_sb, PTR_ERR(result));
121
122
123
124
125
126
127
128
129
130
131
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
132
133
134
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
135
		return 0;
136
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
137
138
139
140
141
142
143
144
145
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
146
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
147
				 int nblocks)
148
{
149
150
151
	int ret;

	/*
152
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
153
154
155
156
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
157
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
158
	jbd_debug(2, "restarting handle %p\n", handle);
159
160
161
	up_write(&EXT4_I(inode)->i_data_sem);
	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
	down_write(&EXT4_I(inode)->i_data_sem);
162
	ext4_discard_preallocations(inode);
163
164

	return ret;
165
166
167
168
169
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
170
void ext4_delete_inode(struct inode *inode)
171
172
{
	handle_t *handle;
173
	int err;
174

175
	if (!is_bad_inode(inode))
176
		dquot_initialize(inode);
177

178
179
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
180
181
182
183
184
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

185
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
186
	if (IS_ERR(handle)) {
187
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
188
189
190
191
192
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
193
		ext4_orphan_del(NULL, inode);
194
195
196
197
		goto no_delete;
	}

	if (IS_SYNC(inode))
198
		ext4_handle_sync(handle);
199
	inode->i_size = 0;
200
201
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
202
		ext4_warning(inode->i_sb,
203
204
205
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
206
	if (inode->i_blocks)
207
		ext4_truncate(inode);
208
209
210
211
212
213
214

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
215
	if (!ext4_handle_has_enough_credits(handle, 3)) {
216
217
218
219
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
220
			ext4_warning(inode->i_sb,
221
222
223
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
224
			ext4_orphan_del(NULL, inode);
225
226
227
228
			goto no_delete;
		}
	}

229
	/*
230
	 * Kill off the orphan record which ext4_truncate created.
231
	 * AKPM: I think this can be inside the above `if'.
232
	 * Note that ext4_orphan_del() has to be able to cope with the
233
	 * deletion of a non-existent orphan - this is because we don't
234
	 * know if ext4_truncate() actually created an orphan record.
235
236
	 * (Well, we could do this if we need to, but heck - it works)
	 */
237
238
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
239
240
241
242
243
244
245
246

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
247
	if (ext4_mark_inode_dirty(handle, inode))
248
249
250
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
251
252
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
271
 *	ext4_block_to_path - parse the block number into array of offsets
272
273
274
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
Dave Kleikamp's avatar
Dave Kleikamp committed
275
276
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
277
 *
278
 *	To store the locations of file's data ext4 uses a data structure common
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

301
static int ext4_block_to_path(struct inode *inode,
302
303
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
304
{
305
306
307
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
308
309
310
311
312
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

313
	if (i_block < direct_blocks) {
314
315
		offsets[n++] = i_block;
		final = direct_blocks;
316
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
317
		offsets[n++] = EXT4_IND_BLOCK;
318
319
320
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
321
		offsets[n++] = EXT4_DIND_BLOCK;
322
323
324
325
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
326
		offsets[n++] = EXT4_TIND_BLOCK;
327
328
329
330
331
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
332
		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
333
334
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
335
336
337
338
339
340
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

341
342
static int __ext4_check_blockref(const char *function, unsigned int line,
				 struct inode *inode,
343
344
				 __le32 *p, unsigned int max)
{
345
	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
346
	__le32 *bref = p;
347
348
	unsigned int blk;

349
	while (bref < p+max) {
350
		blk = le32_to_cpu(*bref++);
351
352
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
353
						    blk, 1))) {
354
			es->s_last_error_block = cpu_to_le64(blk);
355
356
			ext4_error_inode(inode, function, line, blk,
					 "invalid block");
357
358
359
360
			return -EIO;
		}
	}
	return 0;
361
362
363
364
}


#define ext4_check_indirect_blockref(inode, bh)                         \
365
366
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      (__le32 *)(bh)->b_data,			\
367
368
369
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
370
371
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      EXT4_I(inode)->i_data,			\
372
373
			      EXT4_NDIR_BLOCKS)

374
/**
375
 *	ext4_get_branch - read the chain of indirect blocks leading to data
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
400
401
 *
 *      Need to be called with
402
 *      down_read(&EXT4_I(inode)->i_data_sem)
403
 */
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
404
405
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
406
407
408
409
410
411
412
413
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
414
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
415
416
417
	if (!p->key)
		goto no_block;
	while (--depth) {
418
419
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
420
			goto failure;
421

422
423
424
425
426
427
428
429
430
431
432
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
433

434
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
435
436
437
438
439
440
441
442
443
444
445
446
447
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
448
 *	ext4_find_near - find a place for allocation with sufficient locality
449
450
451
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
452
 *	This function returns the preferred place for block allocation.
453
454
455
456
457
458
459
460
461
462
463
464
465
466
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
467
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
468
{
469
	struct ext4_inode_info *ei = EXT4_I(inode);
470
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
471
	__le32 *p;
472
	ext4_fsblk_t bg_start;
473
	ext4_fsblk_t last_block;
474
	ext4_grpblk_t colour;
475
476
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
492
493
494
495
496
497
498
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
499
500
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

501
502
503
504
505
506
507
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

508
509
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
510
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
511
512
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
513
514
515
516
	return bg_start + colour;
}

/**
517
 *	ext4_find_goal - find a preferred place for allocation.
518
519
520
521
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
522
 *	Normally this function find the preferred place for block allocation,
523
 *	returns it.
524
525
 *	Because this is only used for non-extent files, we limit the block nr
 *	to 32 bits.
526
 */
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
527
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
528
				   Indirect *partial)
529
{
530
531
	ext4_fsblk_t goal;

532
	/*
533
	 * XXX need to get goal block from mballoc's data structures
534
535
	 */

536
537
538
	goal = ext4_find_near(inode, partial);
	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
	return goal;
539
540
541
}

/**
542
 *	ext4_blks_to_allocate: Look up the block map and count the number
543
544
545
546
547
548
549
550
551
552
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
553
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
554
				 int blocks_to_boundary)
555
{
556
	unsigned int count = 0;
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
580
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
581
582
583
584
585
586
587
588
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
589
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
590
591
592
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
593
{
594
	struct ext4_allocation_request ar;
595
	int target, i;
596
	unsigned long count = 0, blk_allocated = 0;
597
	int index = 0;
598
	ext4_fsblk_t current_block = 0;
599
600
601
602
603
604
605
606
607
608
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
609
610
611
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
612
613
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
614
615
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
616
617
618
		if (*err)
			goto failed_out;

619
620
621
622
623
624
625
626
		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
			EXT4_ERROR_INODE(inode,
					 "current_block %llu + count %lu > %d!",
					 current_block, count,
					 EXT4_MAX_BLOCK_FILE_PHYS);
			*err = -EIO;
			goto failed_out;
		}
627

628
629
630
631
632
633
		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
634
635
636
637
638
639
640
641
642
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
643
			break;
644
		}
645
646
	}

647
648
649
650
651
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
652
653
654
655
656
657
658
659
660
661
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);
662
663
664
665
666
667
668
669
	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
		EXT4_ERROR_INODE(inode,
				 "current_block %llu + ar.len %d > %d!",
				 current_block, ar.len,
				 EXT4_MAX_BLOCK_FILE_PHYS);
		*err = -EIO;
		goto failed_out;
	}
670

671
672
673
674
675
676
677
678
679
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
680
681
682
683
			/*
			 * save the new block number
			 * for the first direct block
			 */
684
685
			new_blocks[index] = current_block;
		}
686
		blk_allocated += ar.len;
687
688
	}
allocated:
689
	/* total number of blocks allocated for direct blocks */
690
	ret = blk_allocated;
691
692
693
	*err = 0;
	return ret;
failed_out:
694
	for (i = 0; i < index; i++)
695
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
696
697
698
699
	return ret;
}

/**
700
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
701
702
703
704
705
706
707
708
709
710
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
711
 *	the same format as ext4_get_branch() would do. We are calling it after
712
713
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
714
 *	picture as after the successful ext4_get_block(), except that in one
715
716
717
718
719
720
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
721
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
722
723
 *	as described above and return 0.
 */
724
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
725
726
727
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
728
729
730
731
732
733
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
734
735
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
736

737
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
756
		err = ext4_journal_get_create_access(handle, bh);
757
		if (err) {
758
759
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
760
761
762
763
764
765
766
767
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
768
		if (n == indirect_blks) {
769
770
771
772
773
774
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
775
			for (i = 1; i < num; i++)
776
777
778
779
780
781
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

782
783
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
784
785
786
787
788
789
790
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
791
	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
792
	for (i = 1; i <= n ; i++) {
793
		/*
794
795
796
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
797
		 */
798
799
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
				 EXT4_FREE_BLOCKS_FORGET);
800
	}
801
802
	for (i = n+1; i < indirect_blks; i++)
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
803

804
	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
805
806
807
808
809

	return err;
}

/**
810
 * ext4_splice_branch - splice the allocated branch onto inode.
811
812
813
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
814
 *	ext4_alloc_branch)
815
816
817
818
819
820
821
822
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
823
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
824
825
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
826
827
828
{
	int i;
	int err = 0;
829
	ext4_fsblk_t current_block;
830
831
832
833
834
835
836
837

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
838
		err = ext4_journal_get_write_access(handle, where->bh);
839
840
841
842
843
844
845
846
847
848
849
850
851
852
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
853
			*(where->p + i) = cpu_to_le32(current_block++);
854
855
856
857
858
859
860
861
862
863
864
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
865
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
866
867
		 */
		jbd_debug(5, "splicing indirect only\n");
868
869
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
870
871
872
873
874
875
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
876
		ext4_mark_inode_dirty(handle, inode);
877
878
879
880
881
882
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
883
		/*
884
885
886
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
887
		 */
888
889
		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
				 EXT4_FREE_BLOCKS_FORGET);
890
	}
891
892
	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
			 blks, 0);
893
894
895
896
897

	return err;
}

/*
898
 * The ext4_ind_map_blocks() function handles non-extents inodes
899
 * (i.e., using the traditional indirect/double-indirect i_blocks
900
 * scheme) for ext4_map_blocks().
901
 *
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
918
 *
919
920
921
922
923
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
924
 */
925
926
static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
			       struct ext4_map_blocks *map,
927
			       int flags)
928
929
{
	int err = -EIO;
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
930
	ext4_lblk_t offsets[4];
931
932
	Indirect chain[4];
	Indirect *partial;
933
	ext4_fsblk_t goal;
934
935
936
937
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
938
	ext4_fsblk_t first_block = 0;
939

940
	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
941
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
942
	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
943
				   &blocks_to_boundary);
944
945
946
947

	if (depth == 0)
		goto out;

948
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
949
950
951
952
953
954

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		count++;
		/*map more blocks*/
955
		while (count < map->m_len && count <= blocks_to_boundary) {
956
			ext4_fsblk_t blk;
957
958
959
960
961
962
963
964

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
965
		goto got_it;
966
967
968
	}

	/* Next simple case - plain lookup or failed read of indirect block */
969
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
970
971
972
		goto cleanup;

	/*
973
	 * Okay, we need to do block allocation.
974
	*/
975
	goal = ext4_find_goal(inode, map->m_lblk, partial);
976
977
978
979
980
981
982
983

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
984
	count = ext4_blks_to_allocate(partial, indirect_blks,
985
				      map->m_len, blocks_to_boundary);
986
	/*
987
	 * Block out ext4_truncate while we alter the tree
988
	 */
989
	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
990
991
				&count, goal,
				offsets + (partial - chain), partial);
992
993

	/*
994
	 * The ext4_splice_branch call will free and forget any buffers
995
996
997
998
999
1000
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
For faster browsing, not all history is shown. View entire blame