inode.c 148 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23
24
25
26
27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29
30
31
32
33
34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38
39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include "ext4_jbd2.h"
41
42
#include "xattr.h"
#include "acl.h"
43
#include "ext4_extents.h"
44

45
46
#define MPAGE_DA_EXTENT_TAIL 0x01

47
48
49
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
50
51
52
53
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
54
55
}

56
57
static void ext4_invalidatepage(struct page *page, unsigned long offset);

58
59
60
/*
 * Test whether an inode is a fast symlink.
 */
61
static int ext4_inode_is_fast_symlink(struct inode *inode)
62
{
63
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
64
65
66
67
68
69
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
70
 * The ext4 forget function must perform a revoke if we are freeing data
71
72
73
74
75
76
 * which has been journaled.  Metadata (eg. indirect blocks) must be
 * revoked in all cases.
 *
 * "bh" may be NULL: a metadata block may have been freed from memory
 * but there may still be a record of it in the journal, and that record
 * still needs to be revoked.
77
78
 *
 * If the handle isn't valid we're not journaling so there's nothing to do.
79
 */
80
81
int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
			struct buffer_head *bh, ext4_fsblk_t blocknr)
82
83
84
{
	int err;

85
86
87
	if (!ext4_handle_valid(handle))
		return 0;

88
89
90
91
92
93
94
95
96
97
98
99
100
101
	might_sleep();

	BUFFER_TRACE(bh, "enter");

	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
		  "data mode %lx\n",
		  bh, is_metadata, inode->i_mode,
		  test_opt(inode->i_sb, DATA_FLAGS));

	/* Never use the revoke function if we are doing full data
	 * journaling: there is no need to, and a V1 superblock won't
	 * support it.  Otherwise, only skip the revoke on un-journaled
	 * data blocks. */

102
103
	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
	    (!is_metadata && !ext4_should_journal_data(inode))) {
104
		if (bh) {
105
			BUFFER_TRACE(bh, "call jbd2_journal_forget");
106
			return ext4_journal_forget(handle, bh);
107
108
109
110
111
112
113
		}
		return 0;
	}

	/*
	 * data!=journal && (is_metadata || should_journal_data(inode))
	 */
114
115
	BUFFER_TRACE(bh, "call ext4_journal_revoke");
	err = ext4_journal_revoke(handle, blocknr, bh);
116
	if (err)
117
		ext4_abort(inode->i_sb, __func__,
118
119
120
121
122
123
124
125
126
127
128
			   "error %d when attempting revoke", err);
	BUFFER_TRACE(bh, "exit");
	return err;
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
129
	ext4_lblk_t needed;
130
131
132
133
134
135

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
136
	 * like a regular file for ext4 to try to delete it.  Things
137
138
139
140
141
142
143
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
144
145
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
146

147
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

164
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
165
166
167
	if (!IS_ERR(result))
		return result;

168
	ext4_std_error(inode->i_sb, PTR_ERR(result));
169
170
171
172
173
174
175
176
177
178
179
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
180
181
182
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183
		return 0;
184
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185
186
187
188
189
190
191
192
193
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
194
static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195
{
196
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
197
	jbd_debug(2, "restarting handle %p\n", handle);
198
	return ext4_journal_restart(handle, blocks_for_truncate(inode));
199
200
201
202
203
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
204
void ext4_delete_inode(struct inode *inode)
205
206
{
	handle_t *handle;
207
	int err;
208

209
210
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
211
212
213
214
215
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

216
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217
	if (IS_ERR(handle)) {
218
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
219
220
221
222
223
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
224
		ext4_orphan_del(NULL, inode);
225
226
227
228
		goto no_delete;
	}

	if (IS_SYNC(inode))
229
		ext4_handle_sync(handle);
230
	inode->i_size = 0;
231
232
233
234
235
236
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
		ext4_warning(inode->i_sb, __func__,
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
237
	if (inode->i_blocks)
238
		ext4_truncate(inode);
239
240
241
242
243
244
245

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
246
	if (!ext4_handle_has_enough_credits(handle, 3)) {
247
248
249
250
251
252
253
254
255
256
257
258
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
			ext4_warning(inode->i_sb, __func__,
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
			goto no_delete;
		}
	}

259
	/*
260
	 * Kill off the orphan record which ext4_truncate created.
261
	 * AKPM: I think this can be inside the above `if'.
262
	 * Note that ext4_orphan_del() has to be able to cope with the
263
	 * deletion of a non-existent orphan - this is because we don't
264
	 * know if ext4_truncate() actually created an orphan record.
265
266
	 * (Well, we could do this if we need to, but heck - it works)
	 */
267
268
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
269
270
271
272
273
274
275
276

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
277
	if (ext4_mark_inode_dirty(handle, inode))
278
279
280
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
281
282
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
301
 *	ext4_block_to_path - parse the block number into array of offsets
302
303
304
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
Dave Kleikamp's avatar
Dave Kleikamp committed
305
306
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
307
 *
308
 *	To store the locations of file's data ext4 uses a data structure common
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

331
static int ext4_block_to_path(struct inode *inode,
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
332
333
			ext4_lblk_t i_block,
			ext4_lblk_t offsets[4], int *boundary)
334
{
335
336
337
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
338
339
340
341
342
343
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

	if (i_block < 0) {
344
		ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345
346
347
	} else if (i_block < direct_blocks) {
		offsets[n++] = i_block;
		final = direct_blocks;
348
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
349
		offsets[n++] = EXT4_IND_BLOCK;
350
351
352
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
353
		offsets[n++] = EXT4_DIND_BLOCK;
354
355
356
357
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358
		offsets[n++] = EXT4_TIND_BLOCK;
359
360
361
362
363
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
364
		ext4_warning(inode->i_sb, "ext4_block_to_path",
365
				"block %lu > max in inode %lu",
366
				i_block + direct_blocks +
367
				indirect_blocks + double_blocks, inode->i_ino);
368
369
370
371
372
373
374
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

/**
375
 *	ext4_get_branch - read the chain of indirect blocks leading to data
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
400
401
 *
 *      Need to be called with
402
 *      down_read(&EXT4_I(inode)->i_data_sem)
403
 */
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
404
405
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
406
407
408
409
410
411
412
413
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
414
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
415
416
417
418
419
420
	if (!p->key)
		goto no_block;
	while (--depth) {
		bh = sb_bread(sb, le32_to_cpu(p->key));
		if (!bh)
			goto failure;
421
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
422
423
424
425
426
427
428
429
430
431
432
433
434
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
435
 *	ext4_find_near - find a place for allocation with sufficient locality
436
437
438
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
439
 *	This function returns the preferred place for block allocation.
440
441
442
443
444
445
446
447
448
449
450
451
452
453
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
454
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
455
{
456
	struct ext4_inode_info *ei = EXT4_I(inode);
457
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
458
	__le32 *p;
459
	ext4_fsblk_t bg_start;
460
	ext4_fsblk_t last_block;
461
	ext4_grpblk_t colour;
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
477
	bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
478
479
480
481
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
482
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
483
484
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
485
486
487
488
	return bg_start + colour;
}

/**
489
 *	ext4_find_goal - find a preferred place for allocation.
490
491
492
493
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
494
 *	Normally this function find the preferred place for block allocation,
495
 *	returns it.
496
 */
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
497
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
498
		Indirect *partial)
499
500
{
	/*
501
	 * XXX need to get goal block from mballoc's data structures
502
503
	 */

504
	return ext4_find_near(inode, partial);
505
506
507
}

/**
508
 *	ext4_blks_to_allocate: Look up the block map and count the number
509
510
511
512
513
514
515
516
517
518
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
519
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
520
521
		int blocks_to_boundary)
{
522
	unsigned int count = 0;
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
546
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
547
548
549
550
551
552
553
554
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
555
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
556
557
558
				ext4_lblk_t iblock, ext4_fsblk_t goal,
				int indirect_blks, int blks,
				ext4_fsblk_t new_blocks[4], int *err)
559
{
560
	struct ext4_allocation_request ar;
561
	int target, i;
562
	unsigned long count = 0, blk_allocated = 0;
563
	int index = 0;
564
	ext4_fsblk_t current_block = 0;
565
566
567
568
569
570
571
572
573
574
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
575
576
577
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
578
579
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
580
581
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
582
583
584
585
586
587
588
589
590
		if (*err)
			goto failed_out;

		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
591
592
593
594
595
596
597
598
599
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
600
			break;
601
		}
602
603
	}

604
605
606
607
608
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
609
610
611
612
613
614
615
616
617
618
619
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);

620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
		/*
		 * save the new block number
		 * for the first direct block
		 */
			new_blocks[index] = current_block;
		}
635
		blk_allocated += ar.len;
636
637
	}
allocated:
638
	/* total number of blocks allocated for direct blocks */
639
	ret = blk_allocated;
640
641
642
	*err = 0;
	return ret;
failed_out:
643
	for (i = 0; i < index; i++)
644
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
645
646
647
648
	return ret;
}

/**
649
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
650
651
652
653
654
655
656
657
658
659
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
660
 *	the same format as ext4_get_branch() would do. We are calling it after
661
662
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
663
 *	picture as after the successful ext4_get_block(), except that in one
664
665
666
667
668
669
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
670
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
671
672
 *	as described above and return 0.
 */
673
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
674
675
676
				ext4_lblk_t iblock, int indirect_blks,
				int *blks, ext4_fsblk_t goal,
				ext4_lblk_t *offsets, Indirect *branch)
677
678
679
680
681
682
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
683
684
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
685

686
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
705
		err = ext4_journal_get_create_access(handle, bh);
706
707
708
709
710
711
712
713
714
715
		if (err) {
			unlock_buffer(bh);
			brelse(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
716
		if (n == indirect_blks) {
717
718
719
720
721
722
723
724
725
726
727
728
729
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
			for (i=1; i < num; i++)
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

730
731
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
732
733
734
735
736
737
738
739
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
	for (i = 1; i <= n ; i++) {
740
		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
741
		ext4_journal_forget(handle, branch[i].bh);
742
	}
743
	for (i = 0; i < indirect_blks; i++)
744
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
745

746
	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
747
748
749
750
751

	return err;
}

/**
752
 * ext4_splice_branch - splice the allocated branch onto inode.
753
754
755
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
756
 *	ext4_alloc_branch)
757
758
759
760
761
762
763
764
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
765
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
766
			ext4_lblk_t block, Indirect *where, int num, int blks)
767
768
769
{
	int i;
	int err = 0;
770
	ext4_fsblk_t current_block;
771
772
773
774
775
776
777
778

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
779
		err = ext4_journal_get_write_access(handle, where->bh);
780
781
782
783
784
785
786
787
788
789
790
791
792
793
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
794
			*(where->p + i) = cpu_to_le32(current_block++);
795
796
797
798
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */

Kalpak Shah's avatar
Kalpak Shah committed
799
	inode->i_ctime = ext4_current_time(inode);
800
	ext4_mark_inode_dirty(handle, inode);
801
802
803
804
805
806
807
808
809

	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
810
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
811
812
		 */
		jbd_debug(5, "splicing indirect only\n");
813
814
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
815
816
817
818
819
820
821
822
823
824
825
826
827
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 * Inode was dirtied above.
		 */
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
828
		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
829
		ext4_journal_forget(handle, where[i].bh);
830
831
		ext4_free_blocks(handle, inode,
					le32_to_cpu(where[i-1].key), 1, 0);
832
	}
833
	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854

	return err;
}

/*
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
855
856
857
 *
 *
 * Need to be called with
858
859
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
860
 */
861
862
863
864
static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
				  ext4_lblk_t iblock, unsigned int maxblocks,
				  struct buffer_head *bh_result,
				  int create, int extend_disksize)
865
866
{
	int err = -EIO;
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
867
	ext4_lblk_t offsets[4];
868
869
	Indirect chain[4];
	Indirect *partial;
870
	ext4_fsblk_t goal;
871
872
873
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
874
	struct ext4_inode_info *ei = EXT4_I(inode);
875
	int count = 0;
876
	ext4_fsblk_t first_block = 0;
877
	loff_t disksize;
878
879


880
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
881
	J_ASSERT(handle != NULL || create == 0);
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
882
883
	depth = ext4_block_to_path(inode, iblock, offsets,
					&blocks_to_boundary);
884
885
886
887

	if (depth == 0)
		goto out;

888
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
889
890
891
892
893
894
895
896

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
897
			ext4_fsblk_t blk;
898
899
900
901
902
903
904
905

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
906
		goto got_it;
907
908
909
910
911
912
913
	}

	/* Next simple case - plain lookup or failed read of indirect block */
	if (!create || err == -EIO)
		goto cleanup;

	/*
914
	 * Okay, we need to do block allocation.
915
	*/
916
	goal = ext4_find_goal(inode, iblock, partial);
917
918
919
920
921
922
923
924

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
925
	count = ext4_blks_to_allocate(partial, indirect_blks,
926
927
					maxblocks, blocks_to_boundary);
	/*
928
	 * Block out ext4_truncate while we alter the tree
929
	 */
930
931
932
	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
					&count, goal,
					offsets + (partial - chain), partial);
933
934

	/*
935
	 * The ext4_splice_branch call will free and forget any buffers
936
937
938
939
940
941
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
942
		err = ext4_splice_branch(handle, inode, iblock,
943
944
					partial, indirect_blks, count);
	/*
945
	 * i_disksize growing is protected by i_data_sem.  Don't forget to
946
	 * protect it if you're about to implement concurrent
947
	 * ext4_get_block() -bzzz
948
	*/
949
950
951
952
953
954
955
	if (!err && extend_disksize) {
		disksize = ((loff_t) iblock + count) << inode->i_blkbits;
		if (disksize > i_size_read(inode))
			disksize = i_size_read(inode);
		if (disksize > ei->i_disksize)
			ei->i_disksize = disksize;
	}
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
	if (err)
		goto cleanup;

	set_buffer_new(bh_result);
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
	BUFFER_TRACE(bh_result, "returned");
out:
	return err;
}

978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate @blocks for non extent file based file
 */
static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
{
	int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ind_blks, dind_blks, tind_blks;

	/* number of new indirect blocks needed */
	ind_blks = (blocks + icap - 1) / icap;

	dind_blks = (ind_blks + icap - 1) / icap;

	tind_blks = 1;

	return ind_blks + dind_blks + tind_blks;
}

/*
 * Calculate the number of metadata blocks need to reserve
 * to allocate given number of blocks
 */
For faster browsing, not all history is shown. View entire blame