inode.c 169 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23
24
25
26
27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29
30
31
32
33
34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38
39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include <linux/workqueue.h>
41

42
#include "ext4_jbd2.h"
43
44
#include "xattr.h"
#include "acl.h"
45
#include "ext4_extents.h"
46

47
48
#include <trace/events/ext4.h>

49
50
#define MPAGE_DA_EXTENT_TAIL 0x01

51
52
53
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
54
55
56
57
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
58
59
}

60
61
static void ext4_invalidatepage(struct page *page, unsigned long offset);

62
63
64
/*
 * Test whether an inode is a fast symlink.
 */
65
static int ext4_inode_is_fast_symlink(struct inode *inode)
66
{
67
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
68
69
70
71
72
73
74
75
76
77
78
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
79
	ext4_lblk_t needed;
80
81
82
83
84
85

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
86
	 * like a regular file for ext4 to try to delete it.  Things
87
88
89
90
91
92
93
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
94
95
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
96

97
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

114
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
115
116
117
	if (!IS_ERR(result))
		return result;

118
	ext4_std_error(inode->i_sb, PTR_ERR(result));
119
120
121
122
123
124
125
126
127
128
129
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
130
131
132
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
133
		return 0;
134
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
135
136
137
138
139
140
141
142
143
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
144
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
145
				 int nblocks)
146
{
147
148
149
150
151
152
153
154
	int ret;

	/*
	 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
155
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
156
	jbd_debug(2, "restarting handle %p\n", handle);
157
158
159
	up_write(&EXT4_I(inode)->i_data_sem);
	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
	down_write(&EXT4_I(inode)->i_data_sem);
160
	ext4_discard_preallocations(inode);
161
162

	return ret;
163
164
165
166
167
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
168
void ext4_delete_inode(struct inode *inode)
169
170
{
	handle_t *handle;
171
	int err;
172

173
174
175
	if (!is_bad_inode(inode))
		vfs_dq_init(inode);

176
177
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
178
179
180
181
182
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

183
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
184
	if (IS_ERR(handle)) {
185
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
186
187
188
189
190
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
191
		ext4_orphan_del(NULL, inode);
192
193
194
195
		goto no_delete;
	}

	if (IS_SYNC(inode))
196
		ext4_handle_sync(handle);
197
	inode->i_size = 0;
198
199
200
201
202
203
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
		ext4_warning(inode->i_sb, __func__,
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
204
	if (inode->i_blocks)
205
		ext4_truncate(inode);
206
207
208
209
210
211
212

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
213
	if (!ext4_handle_has_enough_credits(handle, 3)) {
214
215
216
217
218
219
220
221
222
223
224
225
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
			ext4_warning(inode->i_sb, __func__,
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
			goto no_delete;
		}
	}

226
	/*
227
	 * Kill off the orphan record which ext4_truncate created.
228
	 * AKPM: I think this can be inside the above `if'.
229
	 * Note that ext4_orphan_del() has to be able to cope with the
230
	 * deletion of a non-existent orphan - this is because we don't
231
	 * know if ext4_truncate() actually created an orphan record.
232
233
	 * (Well, we could do this if we need to, but heck - it works)
	 */
234
235
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
236
237
238
239
240
241
242
243

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
244
	if (ext4_mark_inode_dirty(handle, inode))
245
246
247
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
248
249
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
268
 *	ext4_block_to_path - parse the block number into array of offsets
269
270
271
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
Dave Kleikamp's avatar
Dave Kleikamp committed
272
273
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
274
 *
275
 *	To store the locations of file's data ext4 uses a data structure common
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

298
static int ext4_block_to_path(struct inode *inode,
299
300
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
301
{
302
303
304
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
305
306
307
308
309
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

310
	if (i_block < direct_blocks) {
311
312
		offsets[n++] = i_block;
		final = direct_blocks;
313
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
314
		offsets[n++] = EXT4_IND_BLOCK;
315
316
317
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
318
		offsets[n++] = EXT4_DIND_BLOCK;
319
320
321
322
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
323
		offsets[n++] = EXT4_TIND_BLOCK;
324
325
326
327
328
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
329
		ext4_warning(inode->i_sb, "ext4_block_to_path",
330
331
332
			     "block %lu > max in inode %lu",
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
333
334
335
336
337
338
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

339
static int __ext4_check_blockref(const char *function, struct inode *inode,
340
341
				 __le32 *p, unsigned int max)
{
342
	__le32 *bref = p;
343
344
	unsigned int blk;

345
	while (bref < p+max) {
346
		blk = le32_to_cpu(*bref++);
347
348
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
349
						    blk, 1))) {
350
			ext4_error(inode->i_sb, function,
351
352
				   "invalid block reference %u "
				   "in inode #%lu", blk, inode->i_ino);
353
354
355
356
			return -EIO;
		}
	}
	return 0;
357
358
359
360
}


#define ext4_check_indirect_blockref(inode, bh)                         \
361
	__ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
362
363
364
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
365
	__ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
366
367
			      EXT4_NDIR_BLOCKS)

368
/**
369
 *	ext4_get_branch - read the chain of indirect blocks leading to data
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
394
395
 *
 *      Need to be called with
396
 *      down_read(&EXT4_I(inode)->i_data_sem)
397
 */
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
398
399
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
400
401
402
403
404
405
406
407
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
408
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
409
410
411
	if (!p->key)
		goto no_block;
	while (--depth) {
412
413
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
414
			goto failure;
415

416
417
418
419
420
421
422
423
424
425
426
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
427

428
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
429
430
431
432
433
434
435
436
437
438
439
440
441
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
442
 *	ext4_find_near - find a place for allocation with sufficient locality
443
444
445
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
446
 *	This function returns the preferred place for block allocation.
447
448
449
450
451
452
453
454
455
456
457
458
459
460
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
461
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
462
{
463
	struct ext4_inode_info *ei = EXT4_I(inode);
464
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
465
	__le32 *p;
466
	ext4_fsblk_t bg_start;
467
	ext4_fsblk_t last_block;
468
	ext4_grpblk_t colour;
469
470
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
486
487
488
489
490
491
492
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
493
494
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

495
496
497
498
499
500
501
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

502
503
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
504
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
505
506
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
507
508
509
510
	return bg_start + colour;
}

/**
511
 *	ext4_find_goal - find a preferred place for allocation.
512
513
514
515
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
516
 *	Normally this function find the preferred place for block allocation,
517
 *	returns it.
518
519
 *	Because this is only used for non-extent files, we limit the block nr
 *	to 32 bits.
520
 */
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
521
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
522
				   Indirect *partial)
523
{
524
525
	ext4_fsblk_t goal;

526
	/*
527
	 * XXX need to get goal block from mballoc's data structures
528
529
	 */

530
531
532
	goal = ext4_find_near(inode, partial);
	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
	return goal;
533
534
535
}

/**
536
 *	ext4_blks_to_allocate: Look up the block map and count the number
537
538
539
540
541
542
543
544
545
546
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
547
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
548
				 int blocks_to_boundary)
549
{
550
	unsigned int count = 0;
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
574
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
575
576
577
578
579
580
581
582
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
583
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
584
585
586
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
587
{
588
	struct ext4_allocation_request ar;
589
	int target, i;
590
	unsigned long count = 0, blk_allocated = 0;
591
	int index = 0;
592
	ext4_fsblk_t current_block = 0;
593
594
595
596
597
598
599
600
601
602
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
603
604
605
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
606
607
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
608
609
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
610
611
612
		if (*err)
			goto failed_out;

613
614
		BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);

615
616
617
618
619
620
		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
621
622
623
624
625
626
627
628
629
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
630
			break;
631
		}
632
633
	}

634
635
636
637
638
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
639
640
641
642
643
644
645
646
647
648
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);
649
	BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
650

651
652
653
654
655
656
657
658
659
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
660
661
662
663
			/*
			 * save the new block number
			 * for the first direct block
			 */
664
665
			new_blocks[index] = current_block;
		}
666
		blk_allocated += ar.len;
667
668
	}
allocated:
669
	/* total number of blocks allocated for direct blocks */
670
	ret = blk_allocated;
671
672
673
	*err = 0;
	return ret;
failed_out:
674
	for (i = 0; i < index; i++)
675
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
676
677
678
679
	return ret;
}

/**
680
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
681
682
683
684
685
686
687
688
689
690
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
691
 *	the same format as ext4_get_branch() would do. We are calling it after
692
693
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
694
 *	picture as after the successful ext4_get_block(), except that in one
695
696
697
698
699
700
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
701
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
702
703
 *	as described above and return 0.
 */
704
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
705
706
707
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
708
709
710
711
712
713
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
714
715
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
716

717
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
736
		err = ext4_journal_get_create_access(handle, bh);
737
		if (err) {
738
739
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
740
741
742
743
744
745
746
747
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
748
		if (n == indirect_blks) {
749
750
751
752
753
754
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
755
			for (i = 1; i < num; i++)
756
757
758
759
760
761
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

762
763
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
764
765
766
767
768
769
770
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
771
	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
772
	for (i = 1; i <= n ; i++) {
773
		/* 
774
775
776
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
777
		 */
778
779
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
				 EXT4_FREE_BLOCKS_FORGET);
780
	}
781
782
	for (i = n+1; i < indirect_blks; i++)
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
783

784
	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
785
786
787
788
789

	return err;
}

/**
790
 * ext4_splice_branch - splice the allocated branch onto inode.
791
792
793
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
794
 *	ext4_alloc_branch)
795
796
797
798
799
800
801
802
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
803
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
804
805
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
806
807
808
{
	int i;
	int err = 0;
809
	ext4_fsblk_t current_block;
810
811
812
813
814
815
816
817

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
818
		err = ext4_journal_get_write_access(handle, where->bh);
819
820
821
822
823
824
825
826
827
828
829
830
831
832
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
833
			*(where->p + i) = cpu_to_le32(current_block++);
834
835
836
837
838
839
840
841
842
843
844
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
845
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
846
847
		 */
		jbd_debug(5, "splicing indirect only\n");
848
849
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
850
851
852
853
854
855
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
856
		ext4_mark_inode_dirty(handle, inode);
857
858
859
860
861
862
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
863
		/* 
864
865
866
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
867
		 */
868
869
		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
				 EXT4_FREE_BLOCKS_FORGET);
870
	}
871
872
	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
			 blks, 0);
873
874
875
876
877

	return err;
}

/*
878
879
880
881
 * The ext4_ind_get_blocks() function handles non-extents inodes
 * (i.e., using the traditional indirect/double-indirect i_blocks
 * scheme) for ext4_get_blocks().
 *
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
898
 *
899
900
901
902
903
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
904
 */
905
static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
906
907
908
			       ext4_lblk_t iblock, unsigned int maxblocks,
			       struct buffer_head *bh_result,
			       int flags)
909
910
{
	int err = -EIO;
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
911
	ext4_lblk_t offsets[4];
912
913
	Indirect chain[4];
	Indirect *partial;
914
	ext4_fsblk_t goal;
915
916
917
918
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
919
	ext4_fsblk_t first_block = 0;
920

921
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
922
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
923
	depth = ext4_block_to_path(inode, iblock, offsets,
924
				   &blocks_to_boundary);
925
926
927
928

	if (depth == 0)
		goto out;

929
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
930
931
932
933
934
935
936
937

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
938
			ext4_fsblk_t blk;
939
940
941
942
943
944
945
946

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
947
		goto got_it;
948
949
950
	}

	/* Next simple case - plain lookup or failed read of indirect block */
951
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
952
953
954
		goto cleanup;

	/*
955
	 * Okay, we need to do block allocation.
956
	*/
957
	goal = ext4_find_goal(inode, iblock, partial);
958
959
960
961
962
963
964
965

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
966
	count = ext4_blks_to_allocate(partial, indirect_blks,
967
968
					maxblocks, blocks_to_boundary);
	/*
969
	 * Block out ext4_truncate while we alter the tree
970
	 */
971
	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
972
973
				&count, goal,
				offsets + (partial - chain), partial);
974
975

	/*
976
	 * The ext4_splice_branch call will free and forget any buffers
977
978
979
980
981
982
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
983
		err = ext4_splice_branch(handle, inode, iblock,
984
					 partial, indirect_blks, count);
985
	if (err)
986
987
988
		goto cleanup;

	set_buffer_new(bh_result);
989
990

	ext4_update_inode_fsync_trans(handle, inode, 1);
991
992
993
994
995
996
997
998
999
1000
got_it:
	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
	if (count > blocks_to_boundary)
		set_buffer_boundary(bh_result);
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
For faster browsing, not all history is shown. View entire blame