inode.c 154 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23
24
25
26
27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29
30
31
32
33
34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38
39
#include <linux/uio.h>
#include <linux/bio.h>
40

41
#include "ext4_jbd2.h"
42
43
#include "xattr.h"
#include "acl.h"
44
#include "ext4_extents.h"
45

46
47
#include <trace/events/ext4.h>

48
49
#define MPAGE_DA_EXTENT_TAIL 0x01

50
51
52
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
53
54
55
56
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
57
58
}

59
60
static void ext4_invalidatepage(struct page *page, unsigned long offset);

61
62
63
/*
 * Test whether an inode is a fast symlink.
 */
64
static int ext4_inode_is_fast_symlink(struct inode *inode)
65
{
66
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
67
68
69
70
71
72
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
73
 * The ext4 forget function must perform a revoke if we are freeing data
74
75
76
77
78
79
 * which has been journaled.  Metadata (eg. indirect blocks) must be
 * revoked in all cases.
 *
 * "bh" may be NULL: a metadata block may have been freed from memory
 * but there may still be a record of it in the journal, and that record
 * still needs to be revoked.
80
 *
81
82
 * If the handle isn't valid we're not journaling, but we still need to
 * call into ext4_journal_revoke() to put the buffer head.
83
 */
84
int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
85
		struct buffer_head *bh, ext4_fsblk_t blocknr)
86
87
88
89
90
91
92
93
{
	int err;

	might_sleep();

	BUFFER_TRACE(bh, "enter");

	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
94
		  "data mode %x\n",
95
96
97
98
99
100
101
102
		  bh, is_metadata, inode->i_mode,
		  test_opt(inode->i_sb, DATA_FLAGS));

	/* Never use the revoke function if we are doing full data
	 * journaling: there is no need to, and a V1 superblock won't
	 * support it.  Otherwise, only skip the revoke on un-journaled
	 * data blocks. */

103
104
	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
	    (!is_metadata && !ext4_should_journal_data(inode))) {
105
		if (bh) {
106
			BUFFER_TRACE(bh, "call jbd2_journal_forget");
107
			return ext4_journal_forget(handle, bh);
108
109
110
111
112
113
114
		}
		return 0;
	}

	/*
	 * data!=journal && (is_metadata || should_journal_data(inode))
	 */
115
116
	BUFFER_TRACE(bh, "call ext4_journal_revoke");
	err = ext4_journal_revoke(handle, blocknr, bh);
117
	if (err)
118
		ext4_abort(inode->i_sb, __func__,
119
120
121
122
123
124
125
126
127
128
129
			   "error %d when attempting revoke", err);
	BUFFER_TRACE(bh, "exit");
	return err;
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
130
	ext4_lblk_t needed;
131
132
133
134
135
136

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
137
	 * like a regular file for ext4 to try to delete it.  Things
138
139
140
141
142
143
144
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
145
146
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
147

148
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

165
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
166
167
168
	if (!IS_ERR(result))
		return result;

169
	ext4_std_error(inode->i_sb, PTR_ERR(result));
170
171
172
173
174
175
176
177
178
179
180
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
181
182
183
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
184
		return 0;
185
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
186
187
188
189
190
191
192
193
194
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
195
static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
196
{
197
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
198
	jbd_debug(2, "restarting handle %p\n", handle);
199
	return ext4_journal_restart(handle, blocks_for_truncate(inode));
200
201
202
203
204
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
205
void ext4_delete_inode(struct inode *inode)
206
207
{
	handle_t *handle;
208
	int err;
209

210
211
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
212
213
214
215
216
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

217
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
218
	if (IS_ERR(handle)) {
219
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
220
221
222
223
224
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
225
		ext4_orphan_del(NULL, inode);
226
227
228
229
		goto no_delete;
	}

	if (IS_SYNC(inode))
230
		ext4_handle_sync(handle);
231
	inode->i_size = 0;
232
233
234
235
236
237
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
		ext4_warning(inode->i_sb, __func__,
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
238
	if (inode->i_blocks)
239
		ext4_truncate(inode);
240
241
242
243
244
245
246

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
247
	if (!ext4_handle_has_enough_credits(handle, 3)) {
248
249
250
251
252
253
254
255
256
257
258
259
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
			ext4_warning(inode->i_sb, __func__,
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
			goto no_delete;
		}
	}

260
	/*
261
	 * Kill off the orphan record which ext4_truncate created.
262
	 * AKPM: I think this can be inside the above `if'.
263
	 * Note that ext4_orphan_del() has to be able to cope with the
264
	 * deletion of a non-existent orphan - this is because we don't
265
	 * know if ext4_truncate() actually created an orphan record.
266
267
	 * (Well, we could do this if we need to, but heck - it works)
	 */
268
269
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
270
271
272
273
274
275
276
277

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
278
	if (ext4_mark_inode_dirty(handle, inode))
279
280
281
		/* If that failed, just do the required in-core inode clear. */
		clear_inode(inode);
	else
282
283
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
	return;
no_delete:
	clear_inode(inode);	/* We must guarantee clearing of inode... */
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
302
 *	ext4_block_to_path - parse the block number into array of offsets
303
304
305
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
Dave Kleikamp's avatar
Dave Kleikamp committed
306
307
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
308
 *
309
 *	To store the locations of file's data ext4 uses a data structure common
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

332
static int ext4_block_to_path(struct inode *inode,
333
334
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
335
{
336
337
338
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
339
340
341
342
343
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

344
	if (i_block < direct_blocks) {
345
346
		offsets[n++] = i_block;
		final = direct_blocks;
347
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
348
		offsets[n++] = EXT4_IND_BLOCK;
349
350
351
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
352
		offsets[n++] = EXT4_DIND_BLOCK;
353
354
355
356
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
357
		offsets[n++] = EXT4_TIND_BLOCK;
358
359
360
361
362
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
363
		ext4_warning(inode->i_sb, "ext4_block_to_path",
364
365
366
			     "block %lu > max in inode %lu",
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
367
368
369
370
371
372
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

373
static int __ext4_check_blockref(const char *function, struct inode *inode,
374
375
				 __le32 *p, unsigned int max)
{
376
	__le32 *bref = p;
377
378
	unsigned int blk;

379
	while (bref < p+max) {
380
		blk = le32_to_cpu(*bref++);
381
382
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
383
						    blk, 1))) {
384
			ext4_error(inode->i_sb, function,
385
386
				   "invalid block reference %u "
				   "in inode #%lu", blk, inode->i_ino);
387
388
389
390
			return -EIO;
		}
	}
	return 0;
391
392
393
394
}


#define ext4_check_indirect_blockref(inode, bh)                         \
395
	__ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data,  \
396
397
398
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
399
	__ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data,   \
400
401
			      EXT4_NDIR_BLOCKS)

402
/**
403
 *	ext4_get_branch - read the chain of indirect blocks leading to data
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
428
429
 *
 *      Need to be called with
430
 *      down_read(&EXT4_I(inode)->i_data_sem)
431
 */
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
432
433
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
434
435
436
437
438
439
440
441
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
442
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
443
444
445
	if (!p->key)
		goto no_block;
	while (--depth) {
446
447
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
448
			goto failure;
449

450
451
452
453
454
455
456
457
458
459
460
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
461

462
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
463
464
465
466
467
468
469
470
471
472
473
474
475
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
476
 *	ext4_find_near - find a place for allocation with sufficient locality
477
478
479
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
480
 *	This function returns the preferred place for block allocation.
481
482
483
484
485
486
487
488
489
490
491
492
493
494
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
495
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
496
{
497
	struct ext4_inode_info *ei = EXT4_I(inode);
498
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
499
	__le32 *p;
500
	ext4_fsblk_t bg_start;
501
	ext4_fsblk_t last_block;
502
	ext4_grpblk_t colour;
503
504
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
520
521
522
523
524
525
526
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
527
528
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

529
530
531
532
533
534
535
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

536
537
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
538
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
539
540
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
541
542
543
544
	return bg_start + colour;
}

/**
545
 *	ext4_find_goal - find a preferred place for allocation.
546
547
548
549
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
550
 *	Normally this function find the preferred place for block allocation,
551
 *	returns it.
552
 */
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
553
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
554
				   Indirect *partial)
555
556
{
	/*
557
	 * XXX need to get goal block from mballoc's data structures
558
559
	 */

560
	return ext4_find_near(inode, partial);
561
562
563
}

/**
564
 *	ext4_blks_to_allocate: Look up the block map and count the number
565
566
567
568
569
570
571
572
573
574
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
575
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576
				 int blocks_to_boundary)
577
{
578
	unsigned int count = 0;
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
602
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
603
604
605
606
607
608
609
610
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
611
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
612
613
614
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
615
{
616
	struct ext4_allocation_request ar;
617
	int target, i;
618
	unsigned long count = 0, blk_allocated = 0;
619
	int index = 0;
620
	ext4_fsblk_t current_block = 0;
621
622
623
624
625
626
627
628
629
630
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
631
632
633
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
634
635
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
636
637
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
638
639
640
641
642
643
644
645
646
		if (*err)
			goto failed_out;

		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
647
648
649
650
651
652
653
654
655
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
656
			break;
657
		}
658
659
	}

660
661
662
663
664
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
665
666
667
668
669
670
671
672
673
674
675
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);

676
677
678
679
680
681
682
683
684
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
685
686
687
688
			/*
			 * save the new block number
			 * for the first direct block
			 */
689
690
			new_blocks[index] = current_block;
		}
691
		blk_allocated += ar.len;
692
693
	}
allocated:
694
	/* total number of blocks allocated for direct blocks */
695
	ret = blk_allocated;
696
697
698
	*err = 0;
	return ret;
failed_out:
699
	for (i = 0; i < index; i++)
700
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
701
702
703
704
	return ret;
}

/**
705
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
706
707
708
709
710
711
712
713
714
715
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
716
 *	the same format as ext4_get_branch() would do. We are calling it after
717
718
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
719
 *	picture as after the successful ext4_get_block(), except that in one
720
721
722
723
724
725
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
726
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
727
728
 *	as described above and return 0.
 */
729
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
730
731
732
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
733
734
735
736
737
738
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
739
740
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
741

742
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
761
		err = ext4_journal_get_create_access(handle, bh);
762
		if (err) {
763
764
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
765
766
767
768
769
770
771
772
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
773
		if (n == indirect_blks) {
774
775
776
777
778
779
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
780
			for (i = 1; i < num; i++)
781
782
783
784
785
786
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

787
788
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
789
790
791
792
793
794
795
796
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
	for (i = 1; i <= n ; i++) {
797
		BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
798
		ext4_journal_forget(handle, branch[i].bh);
799
	}
800
	for (i = 0; i < indirect_blks; i++)
801
		ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
802

803
	ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
804
805
806
807
808

	return err;
}

/**
809
 * ext4_splice_branch - splice the allocated branch onto inode.
810
811
812
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
813
 *	ext4_alloc_branch)
814
815
816
817
818
819
820
821
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
822
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
823
824
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
825
826
827
{
	int i;
	int err = 0;
828
	ext4_fsblk_t current_block;
829
830
831
832
833
834
835
836

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
837
		err = ext4_journal_get_write_access(handle, where->bh);
838
839
840
841
842
843
844
845
846
847
848
849
850
851
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
852
			*(where->p + i) = cpu_to_le32(current_block++);
853
854
855
856
857
858
859
860
861
862
863
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
864
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
865
866
		 */
		jbd_debug(5, "splicing indirect only\n");
867
868
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
869
870
871
872
873
874
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
875
		ext4_mark_inode_dirty(handle, inode);
876
877
878
879
880
881
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
882
		BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
883
		ext4_journal_forget(handle, where[i].bh);
884
885
		ext4_free_blocks(handle, inode,
					le32_to_cpu(where[i-1].key), 1, 0);
886
	}
887
	ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
888
889
890
891
892

	return err;
}

/*
893
894
895
896
 * The ext4_ind_get_blocks() function handles non-extents inodes
 * (i.e., using the traditional indirect/double-indirect i_blocks
 * scheme) for ext4_get_blocks().
 *
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
913
 *
914
915
916
917
918
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
919
 */
920
static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
921
922
923
			       ext4_lblk_t iblock, unsigned int maxblocks,
			       struct buffer_head *bh_result,
			       int flags)
924
925
{
	int err = -EIO;
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
926
	ext4_lblk_t offsets[4];
927
928
	Indirect chain[4];
	Indirect *partial;
929
	ext4_fsblk_t goal;
930
931
932
933
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
934
	ext4_fsblk_t first_block = 0;
935

936
	J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
937
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
938
	depth = ext4_block_to_path(inode, iblock, offsets,
939
				   &blocks_to_boundary);
940
941
942
943

	if (depth == 0)
		goto out;

944
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
945
946
947
948
949
950
951
952

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		clear_buffer_new(bh_result);
		count++;
		/*map more blocks*/
		while (count < maxblocks && count <= blocks_to_boundary) {
953
			ext4_fsblk_t blk;
954
955
956
957
958
959
960
961

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
962
		goto got_it;
963
964
965
	}

	/* Next simple case - plain lookup or failed read of indirect block */
966
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
967
968
969
		goto cleanup;

	/*
970
	 * Okay, we need to do block allocation.
971
	*/
972
	goal = ext4_find_goal(inode, iblock, partial);
973
974
975
976
977
978
979
980

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
981
	count = ext4_blks_to_allocate(partial, indirect_blks,
982
983
					maxblocks, blocks_to_boundary);
	/*
984
	 * Block out ext4_truncate while we alter the tree
985
	 */
986
	err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
987
988
				&count, goal,
				offsets + (partial - chain), partial);
989
990

	/*
991
	 * The ext4_splice_branch call will free and forget any buffers
992
993
994
995
996
997
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
998
		err = ext4_splice_branch(handle, inode, iblock,
999
1000
					 partial, indirect_blks, count);
	else
For faster browsing, not all history is shown. View entire blame