inode.c 174 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23
24
25
26
27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29
30
31
32
33
34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38
39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include <linux/workqueue.h>
41
#include <linux/kernel.h>
42
#include <linux/slab.h>
43

44
#include "ext4_jbd2.h"
45
46
#include "xattr.h"
#include "acl.h"
47
#include "ext4_extents.h"
48

49
50
#include <trace/events/ext4.h>

51
52
#define MPAGE_DA_EXTENT_TAIL 0x01

53
54
55
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
56
57
58
59
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
60
61
}

62
static void ext4_invalidatepage(struct page *page, unsigned long offset);
63
static int ext4_writepage(struct page *page, struct writeback_control *wbc);
64

65
66
67
/*
 * Test whether an inode is a fast symlink.
 */
68
static int ext4_inode_is_fast_symlink(struct inode *inode)
69
{
70
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
71
72
73
74
75
76
77
78
79
80
81
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
82
	ext4_lblk_t needed;
83
84
85
86
87
88

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
89
	 * like a regular file for ext4 to try to delete it.  Things
90
91
92
93
94
95
96
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
97
98
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
99

100
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

117
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
118
119
120
	if (!IS_ERR(result))
		return result;

121
	ext4_std_error(inode->i_sb, PTR_ERR(result));
122
123
124
125
126
127
128
129
130
131
132
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
133
134
135
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
136
		return 0;
137
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
138
139
140
141
142
143
144
145
146
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
147
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
148
				 int nblocks)
149
{
150
151
152
	int ret;

	/*
153
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
154
155
156
157
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
158
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
159
	jbd_debug(2, "restarting handle %p\n", handle);
160
161
162
	up_write(&EXT4_I(inode)->i_data_sem);
	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
	down_write(&EXT4_I(inode)->i_data_sem);
163
	ext4_discard_preallocations(inode);
164
165

	return ret;
166
167
168
169
170
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
Al Viro's avatar
Al Viro committed
171
void ext4_evict_inode(struct inode *inode)
172
173
{
	handle_t *handle;
174
	int err;
175

Al Viro's avatar
Al Viro committed
176
177
178
179
180
	if (inode->i_nlink) {
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

181
	if (!is_bad_inode(inode))
182
		dquot_initialize(inode);
183

184
185
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
186
187
188
189
190
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

191
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
192
	if (IS_ERR(handle)) {
193
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
194
195
196
197
198
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
199
		ext4_orphan_del(NULL, inode);
200
201
202
203
		goto no_delete;
	}

	if (IS_SYNC(inode))
204
		ext4_handle_sync(handle);
205
	inode->i_size = 0;
206
207
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
208
		ext4_warning(inode->i_sb,
209
210
211
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
212
	if (inode->i_blocks)
213
		ext4_truncate(inode);
214
215
216
217
218
219
220

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
221
	if (!ext4_handle_has_enough_credits(handle, 3)) {
222
223
224
225
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
226
			ext4_warning(inode->i_sb,
227
228
229
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
230
			ext4_orphan_del(NULL, inode);
231
232
233
234
			goto no_delete;
		}
	}

235
	/*
236
	 * Kill off the orphan record which ext4_truncate created.
237
	 * AKPM: I think this can be inside the above `if'.
238
	 * Note that ext4_orphan_del() has to be able to cope with the
239
	 * deletion of a non-existent orphan - this is because we don't
240
	 * know if ext4_truncate() actually created an orphan record.
241
242
	 * (Well, we could do this if we need to, but heck - it works)
	 */
243
244
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
245
246
247
248
249
250
251
252

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
253
	if (ext4_mark_inode_dirty(handle, inode))
254
		/* If that failed, just do the required in-core inode clear. */
Al Viro's avatar
Al Viro committed
255
		ext4_clear_inode(inode);
256
	else
257
258
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
259
260
	return;
no_delete:
Al Viro's avatar
Al Viro committed
261
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
277
 *	ext4_block_to_path - parse the block number into array of offsets
278
279
280
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
Dave Kleikamp's avatar
Dave Kleikamp committed
281
282
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
283
 *
284
 *	To store the locations of file's data ext4 uses a data structure common
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

307
static int ext4_block_to_path(struct inode *inode,
308
309
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
310
{
311
312
313
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
314
315
316
317
318
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

319
	if (i_block < direct_blocks) {
320
321
		offsets[n++] = i_block;
		final = direct_blocks;
322
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
323
		offsets[n++] = EXT4_IND_BLOCK;
324
325
326
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
327
		offsets[n++] = EXT4_DIND_BLOCK;
328
329
330
331
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
332
		offsets[n++] = EXT4_TIND_BLOCK;
333
334
335
336
337
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
338
		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
339
340
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
341
342
343
344
345
346
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

347
348
static int __ext4_check_blockref(const char *function, unsigned int line,
				 struct inode *inode,
349
350
				 __le32 *p, unsigned int max)
{
351
	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
352
	__le32 *bref = p;
353
354
	unsigned int blk;

355
	while (bref < p+max) {
356
		blk = le32_to_cpu(*bref++);
357
358
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
359
						    blk, 1))) {
360
			es->s_last_error_block = cpu_to_le64(blk);
361
362
			ext4_error_inode(inode, function, line, blk,
					 "invalid block");
363
364
365
366
			return -EIO;
		}
	}
	return 0;
367
368
369
370
}


#define ext4_check_indirect_blockref(inode, bh)                         \
371
372
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      (__le32 *)(bh)->b_data,			\
373
374
375
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
376
377
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      EXT4_I(inode)->i_data,			\
378
379
			      EXT4_NDIR_BLOCKS)

380
/**
381
 *	ext4_get_branch - read the chain of indirect blocks leading to data
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
406
407
 *
 *      Need to be called with
408
 *      down_read(&EXT4_I(inode)->i_data_sem)
409
 */
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
410
411
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
412
413
414
415
416
417
418
419
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
420
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
421
422
423
	if (!p->key)
		goto no_block;
	while (--depth) {
424
425
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
426
			goto failure;
427

428
429
430
431
432
433
434
435
436
437
438
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
439

440
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
441
442
443
444
445
446
447
448
449
450
451
452
453
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
454
 *	ext4_find_near - find a place for allocation with sufficient locality
455
456
457
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
458
 *	This function returns the preferred place for block allocation.
459
460
461
462
463
464
465
466
467
468
469
470
471
472
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
473
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
474
{
475
	struct ext4_inode_info *ei = EXT4_I(inode);
476
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
477
	__le32 *p;
478
	ext4_fsblk_t bg_start;
479
	ext4_fsblk_t last_block;
480
	ext4_grpblk_t colour;
481
482
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
498
499
500
501
502
503
504
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
505
506
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

507
508
509
510
511
512
513
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

514
515
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
516
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
517
518
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
519
520
521
522
	return bg_start + colour;
}

/**
523
 *	ext4_find_goal - find a preferred place for allocation.
524
525
526
527
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
528
 *	Normally this function find the preferred place for block allocation,
529
 *	returns it.
530
531
 *	Because this is only used for non-extent files, we limit the block nr
 *	to 32 bits.
532
 */
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
533
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
534
				   Indirect *partial)
535
{
536
537
	ext4_fsblk_t goal;

538
	/*
539
	 * XXX need to get goal block from mballoc's data structures
540
541
	 */

542
543
544
	goal = ext4_find_near(inode, partial);
	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
	return goal;
545
546
547
}

/**
548
 *	ext4_blks_to_allocate: Look up the block map and count the number
549
550
551
552
553
554
555
556
557
558
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
559
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
560
				 int blocks_to_boundary)
561
{
562
	unsigned int count = 0;
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
586
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
587
588
589
590
591
592
593
594
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
595
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
596
597
598
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
599
{
600
	struct ext4_allocation_request ar;
601
	int target, i;
602
	unsigned long count = 0, blk_allocated = 0;
603
	int index = 0;
604
	ext4_fsblk_t current_block = 0;
605
606
607
608
609
610
611
612
613
614
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
615
616
617
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
618
619
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
620
621
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
622
623
624
		if (*err)
			goto failed_out;

625
626
627
628
629
630
631
632
		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
			EXT4_ERROR_INODE(inode,
					 "current_block %llu + count %lu > %d!",
					 current_block, count,
					 EXT4_MAX_BLOCK_FILE_PHYS);
			*err = -EIO;
			goto failed_out;
		}
633

634
635
636
637
638
639
		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
640
641
642
643
644
645
646
647
648
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
649
			break;
650
		}
651
652
	}

653
654
655
656
657
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
658
659
660
661
662
663
664
665
666
667
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);
668
669
670
671
672
673
674
675
	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
		EXT4_ERROR_INODE(inode,
				 "current_block %llu + ar.len %d > %d!",
				 current_block, ar.len,
				 EXT4_MAX_BLOCK_FILE_PHYS);
		*err = -EIO;
		goto failed_out;
	}
676

677
678
679
680
681
682
683
684
685
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
686
687
688
689
			/*
			 * save the new block number
			 * for the first direct block
			 */
690
691
			new_blocks[index] = current_block;
		}
692
		blk_allocated += ar.len;
693
694
	}
allocated:
695
	/* total number of blocks allocated for direct blocks */
696
	ret = blk_allocated;
697
698
699
	*err = 0;
	return ret;
failed_out:
700
	for (i = 0; i < index; i++)
701
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
702
703
704
705
	return ret;
}

/**
706
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
707
708
709
710
711
712
713
714
715
716
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
717
 *	the same format as ext4_get_branch() would do. We are calling it after
718
719
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
720
 *	picture as after the successful ext4_get_block(), except that in one
721
722
723
724
725
726
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
727
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
728
729
 *	as described above and return 0.
 */
730
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
731
732
733
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
734
735
736
737
738
739
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
740
741
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
742

743
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
762
		err = ext4_journal_get_create_access(handle, bh);
763
		if (err) {
764
765
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
766
767
768
769
770
771
772
773
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
774
		if (n == indirect_blks) {
775
776
777
778
779
780
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
781
			for (i = 1; i < num; i++)
782
783
784
785
786
787
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

788
789
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
790
791
792
793
794
795
796
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
797
	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
798
	for (i = 1; i <= n ; i++) {
799
		/*
800
801
802
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
803
		 */
804
805
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
				 EXT4_FREE_BLOCKS_FORGET);
806
	}
807
808
	for (i = n+1; i < indirect_blks; i++)
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
809

810
	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
811
812
813
814
815

	return err;
}

/**
816
 * ext4_splice_branch - splice the allocated branch onto inode.
817
818
819
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
820
 *	ext4_alloc_branch)
821
822
823
824
825
826
827
828
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
829
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
830
831
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
832
833
834
{
	int i;
	int err = 0;
835
	ext4_fsblk_t current_block;
836
837
838
839
840
841
842
843

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
844
		err = ext4_journal_get_write_access(handle, where->bh);
845
846
847
848
849
850
851
852
853
854
855
856
857
858
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
859
			*(where->p + i) = cpu_to_le32(current_block++);
860
861
862
863
864
865
866
867
868
869
870
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
871
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
872
873
		 */
		jbd_debug(5, "splicing indirect only\n");
874
875
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
876
877
878
879
880
881
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
882
		ext4_mark_inode_dirty(handle, inode);
883
884
885
886
887
888
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
889
		/*
890
891
892
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
893
		 */
894
895
		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
				 EXT4_FREE_BLOCKS_FORGET);
896
	}
897
898
	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
			 blks, 0);
899
900
901
902
903

	return err;
}

/*
904
 * The ext4_ind_map_blocks() function handles non-extents inodes
905
 * (i.e., using the traditional indirect/double-indirect i_blocks
906
 * scheme) for ext4_map_blocks().
907
 *
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
924
 *
925
926
927
928
929
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
930
 */
931
932
static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
			       struct ext4_map_blocks *map,
933
			       int flags)
934
935
{
	int err = -EIO;
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
936
	ext4_lblk_t offsets[4];
937
938
	Indirect chain[4];
	Indirect *partial;
939
	ext4_fsblk_t goal;
940
941
942
943
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
944
	ext4_fsblk_t first_block = 0;
945

946
	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
947
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
948
	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
949
				   &blocks_to_boundary);
950
951
952
953

	if (depth == 0)
		goto out;

954
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
955
956
957
958
959
960

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		count++;
		/*map more blocks*/
961
		while (count < map->m_len && count <= blocks_to_boundary) {
962
			ext4_fsblk_t blk;
963
964
965
966
967
968
969
970

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
971
		goto got_it;
972
973
974
	}

	/* Next simple case - plain lookup or failed read of indirect block */
975
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
976
977
978
		goto cleanup;

	/*
979
	 * Okay, we need to do block allocation.
980
	*/
981
	goal = ext4_find_goal(inode, map->m_lblk, partial);
982
983
984
985
986
987
988
989

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
990
	count = ext4_blks_to_allocate(partial, indirect_blks,
991
				      map->m_len, blocks_to_boundary);
992
	/*
993
	 * Block out ext4_truncate while we alter the tree
994
	 */
995
	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
996
997
				&count, goal,
				offsets + (partial - chain), partial);
998
999

	/*
1000
	 * The ext4_splice_branch call will free and forget any buffers
For faster browsing, not all history is shown. View entire blame