endpoint.c 32.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
Daniel Mack's avatar
Daniel Mack committed
2
3
4
/*
 */

5
6
#include <linux/gfp.h>
#include <linux/init.h>
7
#include <linux/ratelimit.h>
8
9
#include <linux/usb.h>
#include <linux/usb/audio.h>
10
#include <linux/slab.h>
11
12
13

#include <sound/core.h>
#include <sound/pcm.h>
14
#include <sound/pcm_params.h>
15
16
17
18
19
20

#include "usbaudio.h"
#include "helper.h"
#include "card.h"
#include "endpoint.h"
#include "pcm.h"
21
#include "quirks.h"
22

23
#define EP_FLAG_RUNNING		1
24
#define EP_FLAG_STOPPING	2
25

26
27
28
29
30
/*
 * snd_usb_endpoint is a model that abstracts everything related to an
 * USB endpoint and its streaming.
 *
 * There are functions to activate and deactivate the streaming URBs and
31
 * optional callbacks to let the pcm logic handle the actual content of the
32
33
34
 * packets for playback and record. Thus, the bus streaming and the audio
 * handlers are fully decoupled.
 *
35
 * There are two different types of endpoints in audio applications.
36
37
38
39
 *
 * SND_USB_ENDPOINT_TYPE_DATA handles full audio data payload for both
 * inbound and outbound traffic.
 *
40
41
42
 * SND_USB_ENDPOINT_TYPE_SYNC endpoints are for inbound traffic only and
 * expect the payload to carry Q10.14 / Q16.16 formatted sync information
 * (3 or 4 bytes).
43
 *
44
45
 * Each endpoint has to be configured prior to being used by calling
 * snd_usb_endpoint_set_params().
46
47
48
49
 *
 * The model incorporates a reference counting, so that multiple users
 * can call snd_usb_endpoint_start() and snd_usb_endpoint_stop(), and
 * only the first user will effectively start the URBs, and only the last
50
 * one to stop it will tear the URBs down again.
51
52
 */

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
/*
 * convert a sampling rate into our full speed format (fs/1000 in Q16.16)
 * this will overflow at approx 524 kHz
 */
static inline unsigned get_usb_full_speed_rate(unsigned int rate)
{
	return ((rate << 13) + 62) / 125;
}

/*
 * convert a sampling rate into USB high speed format (fs/8000 in Q16.16)
 * this will overflow at approx 4 MHz
 */
static inline unsigned get_usb_high_speed_rate(unsigned int rate)
{
	return ((rate << 10) + 62) / 125;
}

/*
 * release a urb data
 */
static void release_urb_ctx(struct snd_urb_ctx *u)
{
76
77
78
79
80
81
	if (u->buffer_size)
		usb_free_coherent(u->ep->chip->dev, u->buffer_size,
				  u->urb->transfer_buffer,
				  u->urb->transfer_dma);
	usb_free_urb(u->urb);
	u->urb = NULL;
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
}

static const char *usb_error_string(int err)
{
	switch (err) {
	case -ENODEV:
		return "no device";
	case -ENOENT:
		return "endpoint not enabled";
	case -EPIPE:
		return "endpoint stalled";
	case -ENOSPC:
		return "not enough bandwidth";
	case -ESHUTDOWN:
		return "device disabled";
	case -EHOSTUNREACH:
		return "device suspended";
	case -EINVAL:
	case -EAGAIN:
	case -EFBIG:
	case -EMSGSIZE:
		return "internal error";
	default:
		return "unknown error";
	}
}

109
110
111
/**
 * snd_usb_endpoint_implicit_feedback_sink: Report endpoint usage type
 *
112
 * @ep: The snd_usb_endpoint
113
114
115
116
 *
 * Determine whether an endpoint is driven by an implicit feedback
 * data endpoint source.
 */
117
int snd_usb_endpoint_implicit_feedback_sink(struct snd_usb_endpoint *ep)
118
119
120
121
122
123
124
{
	return  ep->sync_master &&
		ep->sync_master->type == SND_USB_ENDPOINT_TYPE_DATA &&
		ep->type == SND_USB_ENDPOINT_TYPE_DATA &&
		usb_pipeout(ep->pipe);
}

125
126
127
128
129
130
131
/*
 * For streaming based on information derived from sync endpoints,
 * prepare_outbound_urb_sizes() will call next_packet_size() to
 * determine the number of samples to be sent in the next packet.
 *
 * For implicit feedback, next_packet_size() is unused.
 */
132
int snd_usb_endpoint_next_packet_size(struct snd_usb_endpoint *ep)
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
{
	unsigned long flags;
	int ret;

	if (ep->fill_max)
		return ep->maxframesize;

	spin_lock_irqsave(&ep->lock, flags);
	ep->phase = (ep->phase & 0xffff)
		+ (ep->freqm << ep->datainterval);
	ret = min(ep->phase >> 16, ep->maxframesize);
	spin_unlock_irqrestore(&ep->lock, flags);

	return ret;
}

static void retire_outbound_urb(struct snd_usb_endpoint *ep,
				struct snd_urb_ctx *urb_ctx)
{
	if (ep->retire_data_urb)
		ep->retire_data_urb(ep->data_subs, urb_ctx->urb);
}

static void retire_inbound_urb(struct snd_usb_endpoint *ep,
			       struct snd_urb_ctx *urb_ctx)
{
	struct urb *urb = urb_ctx->urb;

161
162
163
164
165
	if (unlikely(ep->skip_packets > 0)) {
		ep->skip_packets--;
		return;
	}

166
167
168
169
170
171
172
	if (ep->sync_slave)
		snd_usb_handle_sync_urb(ep->sync_slave, ep, urb);

	if (ep->retire_data_urb)
		ep->retire_data_urb(ep->data_subs, urb);
}

173
174
175
176
177
static void prepare_silent_urb(struct snd_usb_endpoint *ep,
			       struct snd_urb_ctx *ctx)
{
	struct urb *urb = ctx->urb;
	unsigned int offs = 0;
178
179
	unsigned int extra = 0;
	__le32 packet_length;
180
181
	int i;

182
183
184
185
	/* For tx_length_quirk, put packet length at start of packet */
	if (ep->chip->tx_length_quirk)
		extra = sizeof(packet_length);

186
	for (i = 0; i < ctx->packets; ++i) {
187
188
		unsigned int offset;
		unsigned int length;
189
190
191
192
193
194
195
		int counts;

		if (ctx->packet_size[i])
			counts = ctx->packet_size[i];
		else
			counts = snd_usb_endpoint_next_packet_size(ep);

196
197
198
199
200
201
202
203
204
205
206
		length = counts * ep->stride; /* number of silent bytes */
		offset = offs * ep->stride + extra * i;
		urb->iso_frame_desc[i].offset = offset;
		urb->iso_frame_desc[i].length = length + extra;
		if (extra) {
			packet_length = cpu_to_le32(length);
			memcpy(urb->transfer_buffer + offset,
			       &packet_length, sizeof(packet_length));
		}
		memset(urb->transfer_buffer + offset + extra,
		       ep->silence_value, length);
207
208
209
210
		offs += counts;
	}

	urb->number_of_packets = ctx->packets;
211
	urb->transfer_buffer_length = offs * ep->stride + ctx->packets * extra;
212
213
}

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
/*
 * Prepare a PLAYBACK urb for submission to the bus.
 */
static void prepare_outbound_urb(struct snd_usb_endpoint *ep,
				 struct snd_urb_ctx *ctx)
{
	struct urb *urb = ctx->urb;
	unsigned char *cp = urb->transfer_buffer;

	urb->dev = ep->chip->dev; /* we need to set this at each time */

	switch (ep->type) {
	case SND_USB_ENDPOINT_TYPE_DATA:
		if (ep->prepare_data_urb) {
			ep->prepare_data_urb(ep->data_subs, urb);
		} else {
			/* no data provider, so send silence */
231
			prepare_silent_urb(ep, ctx);
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
		}
		break;

	case SND_USB_ENDPOINT_TYPE_SYNC:
		if (snd_usb_get_speed(ep->chip->dev) >= USB_SPEED_HIGH) {
			/*
			 * fill the length and offset of each urb descriptor.
			 * the fixed 12.13 frequency is passed as 16.16 through the pipe.
			 */
			urb->iso_frame_desc[0].length = 4;
			urb->iso_frame_desc[0].offset = 0;
			cp[0] = ep->freqn;
			cp[1] = ep->freqn >> 8;
			cp[2] = ep->freqn >> 16;
			cp[3] = ep->freqn >> 24;
		} else {
			/*
			 * fill the length and offset of each urb descriptor.
			 * the fixed 10.14 frequency is passed through the pipe.
			 */
			urb->iso_frame_desc[0].length = 3;
			urb->iso_frame_desc[0].offset = 0;
			cp[0] = ep->freqn >> 2;
			cp[1] = ep->freqn >> 10;
			cp[2] = ep->freqn >> 18;
		}

		break;
	}
}

/*
 * Prepare a CAPTURE or SYNC urb for submission to the bus.
 */
static inline void prepare_inbound_urb(struct snd_usb_endpoint *ep,
				       struct snd_urb_ctx *urb_ctx)
{
	int i, offs;
	struct urb *urb = urb_ctx->urb;

	urb->dev = ep->chip->dev; /* we need to set this at each time */

	switch (ep->type) {
	case SND_USB_ENDPOINT_TYPE_DATA:
		offs = 0;
		for (i = 0; i < urb_ctx->packets; i++) {
			urb->iso_frame_desc[i].offset = offs;
			urb->iso_frame_desc[i].length = ep->curpacksize;
			offs += ep->curpacksize;
		}

		urb->transfer_buffer_length = offs;
		urb->number_of_packets = urb_ctx->packets;
		break;

	case SND_USB_ENDPOINT_TYPE_SYNC:
		urb->iso_frame_desc[0].length = min(4u, ep->syncmaxsize);
		urb->iso_frame_desc[0].offset = 0;
		break;
	}
}

294
/*
295
 * Send output urbs that have been prepared previously. URBs are dequeued
296
297
298
299
 * from ep->ready_playback_urbs and in case there there aren't any available
 * or there are no packets that have been prepared, this function does
 * nothing.
 *
300
301
302
 * The reason why the functionality of sending and preparing URBs is separated
 * is that host controllers don't guarantee the order in which they return
 * inbound and outbound packets to their submitters.
303
304
 *
 * This function is only used for implicit feedback endpoints. For endpoints
305
306
 * driven by dedicated sync endpoints, URBs are immediately re-submitted
 * from their completion handler.
307
 */
308
309
310
311
312
static void queue_pending_output_urbs(struct snd_usb_endpoint *ep)
{
	while (test_bit(EP_FLAG_RUNNING, &ep->flags)) {

		unsigned long flags;
313
		struct snd_usb_packet_info *uninitialized_var(packet);
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
		struct snd_urb_ctx *ctx = NULL;
		int err, i;

		spin_lock_irqsave(&ep->lock, flags);
		if (ep->next_packet_read_pos != ep->next_packet_write_pos) {
			packet = ep->next_packet + ep->next_packet_read_pos;
			ep->next_packet_read_pos++;
			ep->next_packet_read_pos %= MAX_URBS;

			/* take URB out of FIFO */
			if (!list_empty(&ep->ready_playback_urbs))
				ctx = list_first_entry(&ep->ready_playback_urbs,
					       struct snd_urb_ctx, ready_list);
		}
		spin_unlock_irqrestore(&ep->lock, flags);

		if (ctx == NULL)
			return;

		list_del_init(&ctx->ready_list);

		/* copy over the length information */
		for (i = 0; i < packet->packets; i++)
			ctx->packet_size[i] = packet->packet_size[i];

339
		/* call the data handler to fill in playback data */
340
341
342
343
		prepare_outbound_urb(ep, ctx);

		err = usb_submit_urb(ctx->urb, GFP_ATOMIC);
		if (err < 0)
344
345
346
			usb_audio_err(ep->chip,
				"Unable to submit urb #%d: %d (urb %p)\n",
				ctx->index, err, ctx->urb);
347
348
349
350
351
352
353
354
355
356
357
358
		else
			set_bit(ctx->index, &ep->active_mask);
	}
}

/*
 * complete callback for urbs
 */
static void snd_complete_urb(struct urb *urb)
{
	struct snd_urb_ctx *ctx = urb->context;
	struct snd_usb_endpoint *ep = ctx->ep;
359
360
	struct snd_pcm_substream *substream;
	unsigned long flags;
361
362
363
364
365
	int err;

	if (unlikely(urb->status == -ENOENT ||		/* unlinked */
		     urb->status == -ENODEV ||		/* device removed */
		     urb->status == -ECONNRESET ||	/* unlinked */
366
367
368
369
		     urb->status == -ESHUTDOWN))	/* device disabled */
		goto exit_clear;
	/* device disconnected */
	if (unlikely(atomic_read(&ep->chip->shutdown)))
370
371
		goto exit_clear;

372
373
374
	if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
		goto exit_clear;

375
376
377
378
379
380
	if (usb_pipeout(ep->pipe)) {
		retire_outbound_urb(ep, ctx);
		/* can be stopped during retire callback */
		if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
			goto exit_clear;

381
		if (snd_usb_endpoint_implicit_feedback_sink(ep)) {
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
			spin_lock_irqsave(&ep->lock, flags);
			list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs);
			spin_unlock_irqrestore(&ep->lock, flags);
			queue_pending_output_urbs(ep);

			goto exit_clear;
		}

		prepare_outbound_urb(ep, ctx);
	} else {
		retire_inbound_urb(ep, ctx);
		/* can be stopped during retire callback */
		if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
			goto exit_clear;

		prepare_inbound_urb(ep, ctx);
	}

	err = usb_submit_urb(urb, GFP_ATOMIC);
	if (err == 0)
		return;

404
	usb_audio_err(ep->chip, "cannot submit urb (err = %d)\n", err);
405
406
	if (ep->data_subs && ep->data_subs->pcm_substream) {
		substream = ep->data_subs->pcm_substream;
407
		snd_pcm_stop_xrun(substream);
408
	}
409
410
411
412
413

exit_clear:
	clear_bit(ctx->index, &ep->active_mask);
}

414
/**
415
 * snd_usb_add_endpoint: Add an endpoint to an USB audio chip
416
417
418
419
420
421
422
423
424
425
426
427
428
 *
 * @chip: The chip
 * @alts: The USB host interface
 * @ep_num: The number of the endpoint to use
 * @direction: SNDRV_PCM_STREAM_PLAYBACK or SNDRV_PCM_STREAM_CAPTURE
 * @type: SND_USB_ENDPOINT_TYPE_DATA or SND_USB_ENDPOINT_TYPE_SYNC
 *
 * If the requested endpoint has not been added to the given chip before,
 * a new instance is created. Otherwise, a pointer to the previoulsy
 * created instance is returned. In case of any error, NULL is returned.
 *
 * New endpoints will be added to chip->ep_list and must be freed by
 * calling snd_usb_endpoint_free().
429
430
431
 *
 * For SND_USB_ENDPOINT_TYPE_SYNC, the caller needs to guarantee that
 * bNumEndpoints > 1 beforehand.
432
 */
433
434
435
436
437
struct snd_usb_endpoint *snd_usb_add_endpoint(struct snd_usb_audio *chip,
					      struct usb_host_interface *alts,
					      int ep_num, int direction, int type)
{
	struct snd_usb_endpoint *ep;
438
	int is_playback = direction == SNDRV_PCM_STREAM_PLAYBACK;
439

440
441
442
	if (WARN_ON(!alts))
		return NULL;

443
444
	mutex_lock(&chip->mutex);

445
	list_for_each_entry(ep, &chip->ep_list, list) {
446
447
		if (ep->ep_num == ep_num &&
		    ep->iface == alts->desc.bInterfaceNumber &&
448
		    ep->altsetting == alts->desc.bAlternateSetting) {
449
450
			usb_audio_dbg(ep->chip,
				      "Re-using EP %x in iface %d,%d @%p\n",
451
					ep_num, ep->iface, ep->altsetting, ep);
452
453
454
455
			goto __exit_unlock;
		}
	}

456
	usb_audio_dbg(chip, "Creating new %s %s endpoint #%x\n",
457
458
459
460
461
462
463
464
465
466
467
468
469
		    is_playback ? "playback" : "capture",
		    type == SND_USB_ENDPOINT_TYPE_DATA ? "data" : "sync",
		    ep_num);

	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
	if (!ep)
		goto __exit_unlock;

	ep->chip = chip;
	spin_lock_init(&ep->lock);
	ep->type = type;
	ep->ep_num = ep_num;
	ep->iface = alts->desc.bInterfaceNumber;
470
	ep->altsetting = alts->desc.bAlternateSetting;
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
	INIT_LIST_HEAD(&ep->ready_playback_urbs);
	ep_num &= USB_ENDPOINT_NUMBER_MASK;

	if (is_playback)
		ep->pipe = usb_sndisocpipe(chip->dev, ep_num);
	else
		ep->pipe = usb_rcvisocpipe(chip->dev, ep_num);

	if (type == SND_USB_ENDPOINT_TYPE_SYNC) {
		if (get_endpoint(alts, 1)->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE &&
		    get_endpoint(alts, 1)->bRefresh >= 1 &&
		    get_endpoint(alts, 1)->bRefresh <= 9)
			ep->syncinterval = get_endpoint(alts, 1)->bRefresh;
		else if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL)
			ep->syncinterval = 1;
		else if (get_endpoint(alts, 1)->bInterval >= 1 &&
			 get_endpoint(alts, 1)->bInterval <= 16)
			ep->syncinterval = get_endpoint(alts, 1)->bInterval - 1;
		else
			ep->syncinterval = 3;

		ep->syncmaxsize = le16_to_cpu(get_endpoint(alts, 1)->wMaxPacketSize);
	}

	list_add_tail(&ep->list, &chip->ep_list);

__exit_unlock:
	mutex_unlock(&chip->mutex);

	return ep;
}

/*
 *  wait until all urbs are processed.
 */
static int wait_clear_urbs(struct snd_usb_endpoint *ep)
{
	unsigned long end_time = jiffies + msecs_to_jiffies(1000);
	int alive;

	do {
512
		alive = bitmap_weight(&ep->active_mask, ep->nurbs);
513
514
515
516
517
518
519
		if (!alive)
			break;

		schedule_timeout_uninterruptible(1);
	} while (time_before(jiffies, end_time));

	if (alive)
520
521
522
		usb_audio_err(ep->chip,
			"timeout: still %d active urbs on EP #%x\n",
			alive, ep->ep_num);
523
	clear_bit(EP_FLAG_STOPPING, &ep->flags);
524

525
526
527
528
529
	ep->data_subs = NULL;
	ep->sync_slave = NULL;
	ep->retire_data_urb = NULL;
	ep->prepare_data_urb = NULL;

530
531
532
	return 0;
}

533
534
535
536
537
538
539
540
541
/* sync the pending stop operation;
 * this function itself doesn't trigger the stop operation
 */
void snd_usb_endpoint_sync_pending_stop(struct snd_usb_endpoint *ep)
{
	if (ep && test_bit(EP_FLAG_STOPPING, &ep->flags))
		wait_clear_urbs(ep);
}

542
543
544
/*
 * unlink active urbs.
 */
545
static int deactivate_urbs(struct snd_usb_endpoint *ep, bool force)
546
547
548
{
	unsigned int i;

549
	if (!force && atomic_read(&ep->chip->shutdown)) /* to be sure... */
550
551
552
553
554
555
556
557
558
559
560
561
		return -EBADFD;

	clear_bit(EP_FLAG_RUNNING, &ep->flags);

	INIT_LIST_HEAD(&ep->ready_playback_urbs);
	ep->next_packet_read_pos = 0;
	ep->next_packet_write_pos = 0;

	for (i = 0; i < ep->nurbs; i++) {
		if (test_bit(i, &ep->active_mask)) {
			if (!test_and_set_bit(i, &ep->unlink_mask)) {
				struct urb *u = ep->urb[i].urb;
562
				usb_unlink_urb(u);
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
			}
		}
	}

	return 0;
}

/*
 * release an endpoint's urbs
 */
static void release_urbs(struct snd_usb_endpoint *ep, int force)
{
	int i;

	/* route incoming urbs to nirvana */
	ep->retire_data_urb = NULL;
	ep->prepare_data_urb = NULL;

	/* stop urbs */
582
	deactivate_urbs(ep, force);
583
584
585
586
587
588
589
590
591
592
593
594
595
	wait_clear_urbs(ep);

	for (i = 0; i < ep->nurbs; i++)
		release_urb_ctx(&ep->urb[i]);

	if (ep->syncbuf)
		usb_free_coherent(ep->chip->dev, SYNC_URBS * 4,
				  ep->syncbuf, ep->sync_dma);

	ep->syncbuf = NULL;
	ep->nurbs = 0;
}

596
597
598
/*
 * configure a data endpoint
 */
599
static int data_ep_set_params(struct snd_usb_endpoint *ep,
600
601
602
			      snd_pcm_format_t pcm_format,
			      unsigned int channels,
			      unsigned int period_bytes,
603
604
			      unsigned int frames_per_period,
			      unsigned int periods_per_buffer,
605
606
607
			      struct audioformat *fmt,
			      struct snd_usb_endpoint *sync_ep)
{
608
609
610
	unsigned int maxsize, minsize, packs_per_ms, max_packs_per_urb;
	unsigned int max_packs_per_period, urbs_per_period, urb_packs;
	unsigned int max_urbs, i;
611
	int frame_bits = snd_pcm_format_physical_width(pcm_format) * channels;
612
613
	int tx_length_quirk = (ep->chip->tx_length_quirk &&
			       usb_pipeout(ep->pipe));
614

615
616
617
618
619
620
621
622
623
	if (pcm_format == SNDRV_PCM_FORMAT_DSD_U16_LE && fmt->dsd_dop) {
		/*
		 * When operating in DSD DOP mode, the size of a sample frame
		 * in hardware differs from the actual physical format width
		 * because we need to make room for the DOP markers.
		 */
		frame_bits += channels << 3;
	}

624
625
	ep->datainterval = fmt->datainterval;
	ep->stride = frame_bits >> 3;
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640

	switch (pcm_format) {
	case SNDRV_PCM_FORMAT_U8:
		ep->silence_value = 0x80;
		break;
	case SNDRV_PCM_FORMAT_DSD_U8:
	case SNDRV_PCM_FORMAT_DSD_U16_LE:
	case SNDRV_PCM_FORMAT_DSD_U32_LE:
	case SNDRV_PCM_FORMAT_DSD_U16_BE:
	case SNDRV_PCM_FORMAT_DSD_U32_BE:
		ep->silence_value = 0x69;
		break;
	default:
		ep->silence_value = 0;
	}
641

642
643
	/* assume max. frequency is 50% higher than nominal */
	ep->freqmax = ep->freqn + (ep->freqn >> 1);
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
	/* Round up freqmax to nearest integer in order to calculate maximum
	 * packet size, which must represent a whole number of frames.
	 * This is accomplished by adding 0x0.ffff before converting the
	 * Q16.16 format into integer.
	 * In order to accurately calculate the maximum packet size when
	 * the data interval is more than 1 (i.e. ep->datainterval > 0),
	 * multiply by the data interval prior to rounding. For instance,
	 * a freqmax of 41 kHz will result in a max packet size of 6 (5.125)
	 * frames with a data interval of 1, but 11 (10.25) frames with a
	 * data interval of 2.
	 * (ep->freqmax << ep->datainterval overflows at 8.192 MHz for the
	 * maximum datainterval value of 3, at USB full speed, higher for
	 * USB high speed, noting that ep->freqmax is in units of
	 * frames per packet in Q16.16 format.)
	 */
	maxsize = (((ep->freqmax << ep->datainterval) + 0xffff) >> 16) *
			 (frame_bits >> 3);
661
662
	if (tx_length_quirk)
		maxsize += sizeof(__le32); /* Space for length descriptor */
663
664
	/* but wMaxPacketSize might reduce this */
	if (ep->maxpacksize && ep->maxpacksize < maxsize) {
665
		/* whatever fits into a max. size packet */
666
667
668
669
670
671
		unsigned int data_maxsize = maxsize = ep->maxpacksize;

		if (tx_length_quirk)
			/* Need to remove the length descriptor to calc freq */
			data_maxsize -= sizeof(__le32);
		ep->freqmax = (data_maxsize / (frame_bits >> 3))
672
673
674
675
676
677
678
679
				<< (16 - ep->datainterval);
	}

	if (ep->fill_max)
		ep->curpacksize = ep->maxpacksize;
	else
		ep->curpacksize = maxsize;

680
	if (snd_usb_get_speed(ep->chip->dev) != USB_SPEED_FULL) {
681
		packs_per_ms = 8 >> ep->datainterval;
682
		max_packs_per_urb = MAX_PACKS_HS;
683
	} else {
684
685
		packs_per_ms = 1;
		max_packs_per_urb = MAX_PACKS;
686
	}
687
	if (sync_ep && !snd_usb_endpoint_implicit_feedback_sink(ep))
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
		max_packs_per_urb = min(max_packs_per_urb,
					1U << sync_ep->syncinterval);
	max_packs_per_urb = max(1u, max_packs_per_urb >> ep->datainterval);

	/*
	 * Capture endpoints need to use small URBs because there's no way
	 * to tell in advance where the next period will end, and we don't
	 * want the next URB to complete much after the period ends.
	 *
	 * Playback endpoints with implicit sync much use the same parameters
	 * as their corresponding capture endpoint.
	 */
	if (usb_pipein(ep->pipe) ||
			snd_usb_endpoint_implicit_feedback_sink(ep)) {

703
704
705
706
707
708
709
710
711
712
713
714
715
716
		urb_packs = packs_per_ms;
		/*
		 * Wireless devices can poll at a max rate of once per 4ms.
		 * For dataintervals less than 5, increase the packet count to
		 * allow the host controller to use bursting to fill in the
		 * gaps.
		 */
		if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_WIRELESS) {
			int interval = ep->datainterval;
			while (interval < 5) {
				urb_packs <<= 1;
				++interval;
			}
		}
717
		/* make capture URBs <= 1 ms and smaller than a period */
718
		urb_packs = min(max_packs_per_urb, urb_packs);
719
720
721
		while (urb_packs > 1 && urb_packs * maxsize >= period_bytes)
			urb_packs >>= 1;
		ep->nurbs = MAX_URBS;
722

723
724
725
726
727
728
729
	/*
	 * Playback endpoints without implicit sync are adjusted so that
	 * a period fits as evenly as possible in the smallest number of
	 * URBs.  The total number of URBs is adjusted to the size of the
	 * ALSA buffer, subject to the MAX_URBS and MAX_QUEUE limits.
	 */
	} else {
730
		/* determine how small a packet can be */
731
732
		minsize = (ep->freqn >> (16 - ep->datainterval)) *
				(frame_bits >> 3);
733
734
735
736
737
		/* with sync from device, assume it can be 12% lower */
		if (sync_ep)
			minsize -= minsize >> 3;
		minsize = max(minsize, 1u);

738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
		/* how many packets will contain an entire ALSA period? */
		max_packs_per_period = DIV_ROUND_UP(period_bytes, minsize);

		/* how many URBs will contain a period? */
		urbs_per_period = DIV_ROUND_UP(max_packs_per_period,
				max_packs_per_urb);
		/* how many packets are needed in each URB? */
		urb_packs = DIV_ROUND_UP(max_packs_per_period, urbs_per_period);

		/* limit the number of frames in a single URB */
		ep->max_urb_frames = DIV_ROUND_UP(frames_per_period,
					urbs_per_period);

		/* try to use enough URBs to contain an entire ALSA buffer */
		max_urbs = min((unsigned) MAX_URBS,
				MAX_QUEUE * packs_per_ms / urb_packs);
		ep->nurbs = min(max_urbs, urbs_per_period * periods_per_buffer);
755
756
757
758
759
760
761
	}

	/* allocate and initialize data urbs */
	for (i = 0; i < ep->nurbs; i++) {
		struct snd_urb_ctx *u = &ep->urb[i];
		u->index = i;
		u->ep = ep;
762
		u->packets = urb_packs;
763
764
765
766
767
768
769
770
771
772
773
774
775
776
		u->buffer_size = maxsize * u->packets;

		if (fmt->fmt_type == UAC_FORMAT_TYPE_II)
			u->packets++; /* for transfer delimiter */
		u->urb = usb_alloc_urb(u->packets, GFP_KERNEL);
		if (!u->urb)
			goto out_of_memory;

		u->urb->transfer_buffer =
			usb_alloc_coherent(ep->chip->dev, u->buffer_size,
					   GFP_KERNEL, &u->urb->transfer_dma);
		if (!u->urb->transfer_buffer)
			goto out_of_memory;
		u->urb->pipe = ep->pipe;
777
		u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
778
779
780
781
782
783
784
785
786
787
788
789
790
		u->urb->interval = 1 << ep->datainterval;
		u->urb->context = u;
		u->urb->complete = snd_complete_urb;
		INIT_LIST_HEAD(&u->ready_list);
	}

	return 0;

out_of_memory:
	release_urbs(ep, 0);
	return -ENOMEM;
}

791
792
793
/*
 * configure a sync endpoint
 */
794
static int sync_ep_set_params(struct snd_usb_endpoint *ep)
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
{
	int i;

	ep->syncbuf = usb_alloc_coherent(ep->chip->dev, SYNC_URBS * 4,
					 GFP_KERNEL, &ep->sync_dma);
	if (!ep->syncbuf)
		return -ENOMEM;

	for (i = 0; i < SYNC_URBS; i++) {
		struct snd_urb_ctx *u = &ep->urb[i];
		u->index = i;
		u->ep = ep;
		u->packets = 1;
		u->urb = usb_alloc_urb(1, GFP_KERNEL);
		if (!u->urb)
			goto out_of_memory;
		u->urb->transfer_buffer = ep->syncbuf + i * 4;
		u->urb->transfer_dma = ep->sync_dma + i * 4;
		u->urb->transfer_buffer_length = 4;
		u->urb->pipe = ep->pipe;
815
		u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
		u->urb->number_of_packets = 1;
		u->urb->interval = 1 << ep->syncinterval;
		u->urb->context = u;
		u->urb->complete = snd_complete_urb;
	}

	ep->nurbs = SYNC_URBS;

	return 0;

out_of_memory:
	release_urbs(ep, 0);
	return -ENOMEM;
}

831
/**
832
 * snd_usb_endpoint_set_params: configure an snd_usb_endpoint
833
 *
834
 * @ep: the snd_usb_endpoint to configure
835
836
837
 * @pcm_format: the audio fomat.
 * @channels: the number of audio channels.
 * @period_bytes: the number of bytes in one alsa period.
838
839
 * @period_frames: the number of frames in one alsa period.
 * @buffer_periods: the number of periods in one alsa buffer.
840
 * @rate: the frame rate.
841
842
 * @fmt: the USB audio format information
 * @sync_ep: the sync endpoint to use, if any
843
 *
844
 * Determine the number of URBs to be used on this endpoint.
845
846
847
 * An endpoint must be configured before it can be started.
 * An endpoint that is already running can not be reconfigured.
 */
848
int snd_usb_endpoint_set_params(struct snd_usb_endpoint *ep,
849
850
851
				snd_pcm_format_t pcm_format,
				unsigned int channels,
				unsigned int period_bytes,
852
853
				unsigned int period_frames,
				unsigned int buffer_periods,
854
				unsigned int rate,
855
856
857
858
859
860
				struct audioformat *fmt,
				struct snd_usb_endpoint *sync_ep)
{
	int err;

	if (ep->use_count != 0) {
861
862
863
		usb_audio_warn(ep->chip,
			 "Unable to change format on ep #%x: already in use\n",
			 ep->ep_num);
864
865
866
867
868
869
870
871
		return -EBUSY;
	}

	/* release old buffers, if any */
	release_urbs(ep, 0);

	ep->datainterval = fmt->datainterval;
	ep->maxpacksize = fmt->maxpacksize;
872
	ep->fill_max = !!(fmt->attributes & UAC_EP_CS_ATTR_FILL_MAX);
873
874

	if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_FULL)
875
		ep->freqn = get_usb_full_speed_rate(rate);
876
	else
877
		ep->freqn = get_usb_high_speed_rate(rate);
878
879
880
881
882
883
884
885
886

	/* calculate the frequency in 16.16 format */
	ep->freqm = ep->freqn;
	ep->freqshift = INT_MIN;

	ep->phase = 0;

	switch (ep->type) {
	case  SND_USB_ENDPOINT_TYPE_DATA:
887
		err = data_ep_set_params(ep, pcm_format, channels,
888
889
					 period_bytes, period_frames,
					 buffer_periods, fmt, sync_ep);
890
891
		break;
	case  SND_USB_ENDPOINT_TYPE_SYNC:
892
		err = sync_ep_set_params(ep);
893
894
895
896
897
		break;
	default:
		err = -EINVAL;
	}

898
899
900
	usb_audio_dbg(ep->chip,
		"Setting params for ep #%x (type %d, %d urbs), ret=%d\n",
		ep->ep_num, ep->type, ep->nurbs, err);
901
902
903
904

	return err;
}

905
906
907
/**
 * snd_usb_endpoint_start: start an snd_usb_endpoint
 *
908
 * @ep: the endpoint to start
909
910
 *
 * A call to this function will increment the use count of the endpoint.
911
 * In case it is not already running, the URBs for this endpoint will be
912
913
914
915
916
917
 * submitted. Otherwise, this function does nothing.
 *
 * Must be balanced to calls of snd_usb_endpoint_stop().
 *
 * Returns an error if the URB submission failed, 0 in all other cases.
 */
918
int snd_usb_endpoint_start(struct snd_usb_endpoint *ep)
919
920
921
922
{
	int err;
	unsigned int i;

923
	if (atomic_read(&ep->chip->shutdown))
924
925
926
927
928
929
		return -EBADFD;

	/* already running? */
	if (++ep->use_count != 1)
		return 0;

930
	/* just to be sure */
931
	deactivate_urbs(ep, false);
932

933
934
935
936
	ep->active_mask = 0;
	ep->unlink_mask = 0;
	ep->phase = 0;

937
938
	snd_usb_endpoint_start_quirk(ep);

939
940
941
	/*
	 * If this endpoint has a data endpoint as implicit feedback source,
	 * don't start the urbs here. Instead, mark them all as available,
942
943
	 * wait for the record urbs to return and queue the playback urbs
	 * from that context.
944
945
946
947
	 */

	set_bit(EP_FLAG_RUNNING, &ep->flags);

948
	if (snd_usb_endpoint_implicit_feedback_sink(ep)) {
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
		for (i = 0; i < ep->nurbs; i++) {
			struct snd_urb_ctx *ctx = ep->urb + i;
			list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs);
		}

		return 0;
	}

	for (i = 0; i < ep->nurbs; i++) {
		struct urb *urb = ep->urb[i].urb;

		if (snd_BUG_ON(!urb))
			goto __error;

		if (usb_pipeout(ep->pipe)) {
			prepare_outbound_urb(ep, urb->context);
		} else {
			prepare_inbound_urb(ep, urb->context);
		}

		err = usb_submit_urb(urb, GFP_ATOMIC);
		if (err < 0) {
971
972
973
			usb_audio_err(ep->chip,
				"cannot submit urb %d, error %d: %s\n",
				i, err, usb_error_string(err));
974
975
976
977
978
979
980
981
982
983
			goto __error;
		}
		set_bit(i, &ep->active_mask);
	}

	return 0;

__error:
	clear_bit(EP_FLAG_RUNNING, &ep->flags);
	ep->use_count--;
984
	deactivate_urbs(ep, false);
985
986
987
	return -EPIPE;
}

988
989
990
991
992
993
994
/**
 * snd_usb_endpoint_stop: stop an snd_usb_endpoint
 *
 * @ep: the endpoint to stop (may be NULL)
 *
 * A call to this function will decrement the use count of the endpoint.
 * In case the last user has requested the endpoint stop, the URBs will
995
 * actually be deactivated.
996
997
 *
 * Must be balanced to calls of snd_usb_endpoint_start().
998
999
1000
 *
 * The caller needs to synchronize the pending stop operation via
 * snd_usb_endpoint_sync_pending_stop().