inode.c 170 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23
24
25
26
27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29
30
31
32
33
34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38
39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include <linux/workqueue.h>
41
#include <linux/kernel.h>
42
#include <linux/slab.h>
43

44
#include "ext4_jbd2.h"
45
46
#include "xattr.h"
#include "acl.h"
47
#include "ext4_extents.h"
48

49
50
#include <trace/events/ext4.h>

51
52
#define MPAGE_DA_EXTENT_TAIL 0x01

53
54
55
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
56
57
58
59
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
60
61
}

62
static void ext4_invalidatepage(struct page *page, unsigned long offset);
63
64
65
66
67
68
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
69

70
71
72
/*
 * Test whether an inode is a fast symlink.
 */
73
static int ext4_inode_is_fast_symlink(struct inode *inode)
74
{
75
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
76
77
78
79
80
81
82
83
84
85
86
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
87
	ext4_lblk_t needed;
88
89
90
91
92
93

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
94
	 * like a regular file for ext4 to try to delete it.  Things
95
96
97
98
99
100
101
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
102
103
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
104

105
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

122
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
123
124
125
	if (!IS_ERR(result))
		return result;

126
	ext4_std_error(inode->i_sb, PTR_ERR(result));
127
128
129
130
131
132
133
134
135
136
137
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
138
139
140
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
141
		return 0;
142
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
143
144
145
146
147
148
149
150
151
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
152
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
153
				 int nblocks)
154
{
155
156
157
	int ret;

	/*
158
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
159
160
161
162
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
163
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
164
	jbd_debug(2, "restarting handle %p\n", handle);
165
166
167
	up_write(&EXT4_I(inode)->i_data_sem);
	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
	down_write(&EXT4_I(inode)->i_data_sem);
168
	ext4_discard_preallocations(inode);
169
170

	return ret;
171
172
173
174
175
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
Al Viro's avatar
Al Viro committed
176
void ext4_evict_inode(struct inode *inode)
177
178
{
	handle_t *handle;
179
	int err;
180

Al Viro's avatar
Al Viro committed
181
182
183
184
185
	if (inode->i_nlink) {
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

186
	if (!is_bad_inode(inode))
187
		dquot_initialize(inode);
188

189
190
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
191
192
193
194
195
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

196
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
197
	if (IS_ERR(handle)) {
198
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
199
200
201
202
203
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
204
		ext4_orphan_del(NULL, inode);
205
206
207
208
		goto no_delete;
	}

	if (IS_SYNC(inode))
209
		ext4_handle_sync(handle);
210
	inode->i_size = 0;
211
212
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
213
		ext4_warning(inode->i_sb,
214
215
216
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
217
	if (inode->i_blocks)
218
		ext4_truncate(inode);
219
220
221
222
223
224
225

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
226
	if (!ext4_handle_has_enough_credits(handle, 3)) {
227
228
229
230
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
231
			ext4_warning(inode->i_sb,
232
233
234
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
235
			ext4_orphan_del(NULL, inode);
236
237
238
239
			goto no_delete;
		}
	}

240
	/*
241
	 * Kill off the orphan record which ext4_truncate created.
242
	 * AKPM: I think this can be inside the above `if'.
243
	 * Note that ext4_orphan_del() has to be able to cope with the
244
	 * deletion of a non-existent orphan - this is because we don't
245
	 * know if ext4_truncate() actually created an orphan record.
246
247
	 * (Well, we could do this if we need to, but heck - it works)
	 */
248
249
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
250
251
252
253
254
255
256
257

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
258
	if (ext4_mark_inode_dirty(handle, inode))
259
		/* If that failed, just do the required in-core inode clear. */
Al Viro's avatar
Al Viro committed
260
		ext4_clear_inode(inode);
261
	else
262
263
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
264
265
	return;
no_delete:
Al Viro's avatar
Al Viro committed
266
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
282
 *	ext4_block_to_path - parse the block number into array of offsets
283
284
285
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
Dave Kleikamp's avatar
Dave Kleikamp committed
286
287
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
288
 *
289
 *	To store the locations of file's data ext4 uses a data structure common
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

312
static int ext4_block_to_path(struct inode *inode,
313
314
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
315
{
316
317
318
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
319
320
321
322
323
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

324
	if (i_block < direct_blocks) {
325
326
		offsets[n++] = i_block;
		final = direct_blocks;
327
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
328
		offsets[n++] = EXT4_IND_BLOCK;
329
330
331
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
332
		offsets[n++] = EXT4_DIND_BLOCK;
333
334
335
336
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
337
		offsets[n++] = EXT4_TIND_BLOCK;
338
339
340
341
342
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
343
		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
344
345
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
346
347
348
349
350
351
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

352
353
static int __ext4_check_blockref(const char *function, unsigned int line,
				 struct inode *inode,
354
355
				 __le32 *p, unsigned int max)
{
356
	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
357
	__le32 *bref = p;
358
359
	unsigned int blk;

360
	while (bref < p+max) {
361
		blk = le32_to_cpu(*bref++);
362
363
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
364
						    blk, 1))) {
365
			es->s_last_error_block = cpu_to_le64(blk);
366
367
			ext4_error_inode(inode, function, line, blk,
					 "invalid block");
368
369
370
371
			return -EIO;
		}
	}
	return 0;
372
373
374
375
}


#define ext4_check_indirect_blockref(inode, bh)                         \
376
377
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      (__le32 *)(bh)->b_data,			\
378
379
380
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
381
382
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      EXT4_I(inode)->i_data,			\
383
384
			      EXT4_NDIR_BLOCKS)

385
/**
386
 *	ext4_get_branch - read the chain of indirect blocks leading to data
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
411
412
 *
 *      Need to be called with
413
 *      down_read(&EXT4_I(inode)->i_data_sem)
414
 */
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
415
416
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
417
418
419
420
421
422
423
424
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
425
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
426
427
428
	if (!p->key)
		goto no_block;
	while (--depth) {
429
430
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
431
			goto failure;
432

433
434
435
436
437
438
439
440
441
442
443
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
444

445
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
446
447
448
449
450
451
452
453
454
455
456
457
458
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
459
 *	ext4_find_near - find a place for allocation with sufficient locality
460
461
462
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
463
 *	This function returns the preferred place for block allocation.
464
465
466
467
468
469
470
471
472
473
474
475
476
477
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
478
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
479
{
480
	struct ext4_inode_info *ei = EXT4_I(inode);
481
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
482
	__le32 *p;
483
	ext4_fsblk_t bg_start;
484
	ext4_fsblk_t last_block;
485
	ext4_grpblk_t colour;
486
487
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
503
504
505
506
507
508
509
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
510
511
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

512
513
514
515
516
517
518
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

519
520
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
521
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
522
523
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
524
525
526
527
	return bg_start + colour;
}

/**
528
 *	ext4_find_goal - find a preferred place for allocation.
529
530
531
532
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
533
 *	Normally this function find the preferred place for block allocation,
534
 *	returns it.
535
536
 *	Because this is only used for non-extent files, we limit the block nr
 *	to 32 bits.
537
 */
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
538
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
539
				   Indirect *partial)
540
{
541
542
	ext4_fsblk_t goal;

543
	/*
544
	 * XXX need to get goal block from mballoc's data structures
545
546
	 */

547
548
549
	goal = ext4_find_near(inode, partial);
	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
	return goal;
550
551
552
}

/**
553
 *	ext4_blks_to_allocate: Look up the block map and count the number
554
555
556
557
558
559
560
561
562
563
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
564
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
565
				 int blocks_to_boundary)
566
{
567
	unsigned int count = 0;
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
591
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
592
593
594
595
596
597
598
599
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
600
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
601
602
603
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
604
{
605
	struct ext4_allocation_request ar;
606
	int target, i;
607
	unsigned long count = 0, blk_allocated = 0;
608
	int index = 0;
609
	ext4_fsblk_t current_block = 0;
610
611
612
613
614
615
616
617
618
619
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
620
621
622
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
623
624
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
625
626
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
627
628
629
		if (*err)
			goto failed_out;

630
631
632
633
634
635
636
637
		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
			EXT4_ERROR_INODE(inode,
					 "current_block %llu + count %lu > %d!",
					 current_block, count,
					 EXT4_MAX_BLOCK_FILE_PHYS);
			*err = -EIO;
			goto failed_out;
		}
638

639
640
641
642
643
644
		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
645
646
647
648
649
650
651
652
653
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
654
			break;
655
		}
656
657
	}

658
659
660
661
662
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
663
664
665
666
667
668
669
670
671
672
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);
673
674
675
676
677
678
679
680
	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
		EXT4_ERROR_INODE(inode,
				 "current_block %llu + ar.len %d > %d!",
				 current_block, ar.len,
				 EXT4_MAX_BLOCK_FILE_PHYS);
		*err = -EIO;
		goto failed_out;
	}
681

682
683
684
685
686
687
688
689
690
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
691
692
693
694
			/*
			 * save the new block number
			 * for the first direct block
			 */
695
696
			new_blocks[index] = current_block;
		}
697
		blk_allocated += ar.len;
698
699
	}
allocated:
700
	/* total number of blocks allocated for direct blocks */
701
	ret = blk_allocated;
702
703
704
	*err = 0;
	return ret;
failed_out:
705
	for (i = 0; i < index; i++)
706
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
707
708
709
710
	return ret;
}

/**
711
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
712
713
714
715
716
717
718
719
720
721
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
722
 *	the same format as ext4_get_branch() would do. We are calling it after
723
724
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
725
 *	picture as after the successful ext4_get_block(), except that in one
726
727
728
729
730
731
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
732
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
733
734
 *	as described above and return 0.
 */
735
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
736
737
738
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
739
740
741
742
743
744
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
745
746
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
747

748
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
764
765
766
767
768
		if (unlikely(!bh)) {
			err = -EIO;
			goto failed;
		}

769
770
771
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
772
		err = ext4_journal_get_create_access(handle, bh);
773
		if (err) {
774
775
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
776
777
778
779
780
781
782
783
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
784
		if (n == indirect_blks) {
785
786
787
788
789
790
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
791
			for (i = 1; i < num; i++)
792
793
794
795
796
797
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

798
799
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
800
801
802
803
804
805
806
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
807
	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
808
	for (i = 1; i <= n ; i++) {
809
		/*
810
811
812
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
813
		 */
814
815
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
				 EXT4_FREE_BLOCKS_FORGET);
816
	}
817
818
	for (i = n+1; i < indirect_blks; i++)
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
819

820
	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
821
822
823
824
825

	return err;
}

/**
826
 * ext4_splice_branch - splice the allocated branch onto inode.
827
828
829
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
830
 *	ext4_alloc_branch)
831
832
833
834
835
836
837
838
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
839
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
840
841
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
842
843
844
{
	int i;
	int err = 0;
845
	ext4_fsblk_t current_block;
846
847
848
849
850
851
852
853

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
854
		err = ext4_journal_get_write_access(handle, where->bh);
855
856
857
858
859
860
861
862
863
864
865
866
867
868
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
869
			*(where->p + i) = cpu_to_le32(current_block++);
870
871
872
873
874
875
876
877
878
879
880
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
881
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
882
883
		 */
		jbd_debug(5, "splicing indirect only\n");
884
885
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
886
887
888
889
890
891
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
892
		ext4_mark_inode_dirty(handle, inode);
893
894
895
896
897
898
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
899
		/*
900
901
902
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
903
		 */
904
905
		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
				 EXT4_FREE_BLOCKS_FORGET);
906
	}
907
908
	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
			 blks, 0);
909
910
911
912
913

	return err;
}

/*
914
 * The ext4_ind_map_blocks() function handles non-extents inodes
915
 * (i.e., using the traditional indirect/double-indirect i_blocks
916
 * scheme) for ext4_map_blocks().
917
 *
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
934
 *
935
936
937
938
939
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
940
 */
941
942
static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
			       struct ext4_map_blocks *map,
943
			       int flags)
944
945
{
	int err = -EIO;
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
946
	ext4_lblk_t offsets[4];
947
948
	Indirect chain[4];
	Indirect *partial;
949
	ext4_fsblk_t goal;
950
951
952
953
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
954
	ext4_fsblk_t first_block = 0;
955

956
	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
957
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
958
	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
959
				   &blocks_to_boundary);
960
961
962
963

	if (depth == 0)
		goto out;

964
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
965
966
967
968
969
970

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		count++;
		/*map more blocks*/
971
		while (count < map->m_len && count <= blocks_to_boundary) {
972
			ext4_fsblk_t blk;
973
974
975
976
977
978
979
980

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
981
		goto got_it;
982
983
984
	}

	/* Next simple case - plain lookup or failed read of indirect block */
985
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
986
987
988
		goto cleanup;

	/*
989
	 * Okay, we need to do block allocation.
990
	*/
991
	goal = ext4_find_goal(inode, map->m_lblk, partial);
992
993
994
995
996
997
998
999

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
1000
	count = ext4_blks_to_allocate(partial, indirect_blks,
For faster browsing, not all history is shown. View entire blame