endpoint.c 32 KB
Newer Older
Daniel Mack's avatar
Daniel Mack committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/*
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 *
 */

18
19
#include <linux/gfp.h>
#include <linux/init.h>
20
#include <linux/ratelimit.h>
21
22
#include <linux/usb.h>
#include <linux/usb/audio.h>
23
#include <linux/slab.h>
24
25
26

#include <sound/core.h>
#include <sound/pcm.h>
27
#include <sound/pcm_params.h>
28
29
30
31
32
33

#include "usbaudio.h"
#include "helper.h"
#include "card.h"
#include "endpoint.h"
#include "pcm.h"
34
#include "quirks.h"
35

36
#define EP_FLAG_RUNNING		1
37
#define EP_FLAG_STOPPING	2
38

39
40
41
42
43
/*
 * snd_usb_endpoint is a model that abstracts everything related to an
 * USB endpoint and its streaming.
 *
 * There are functions to activate and deactivate the streaming URBs and
44
 * optional callbacks to let the pcm logic handle the actual content of the
45
46
47
 * packets for playback and record. Thus, the bus streaming and the audio
 * handlers are fully decoupled.
 *
48
 * There are two different types of endpoints in audio applications.
49
50
51
52
 *
 * SND_USB_ENDPOINT_TYPE_DATA handles full audio data payload for both
 * inbound and outbound traffic.
 *
53
54
55
 * SND_USB_ENDPOINT_TYPE_SYNC endpoints are for inbound traffic only and
 * expect the payload to carry Q10.14 / Q16.16 formatted sync information
 * (3 or 4 bytes).
56
 *
57
58
 * Each endpoint has to be configured prior to being used by calling
 * snd_usb_endpoint_set_params().
59
60
61
62
 *
 * The model incorporates a reference counting, so that multiple users
 * can call snd_usb_endpoint_start() and snd_usb_endpoint_stop(), and
 * only the first user will effectively start the URBs, and only the last
63
 * one to stop it will tear the URBs down again.
64
65
 */

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
/*
 * convert a sampling rate into our full speed format (fs/1000 in Q16.16)
 * this will overflow at approx 524 kHz
 */
static inline unsigned get_usb_full_speed_rate(unsigned int rate)
{
	return ((rate << 13) + 62) / 125;
}

/*
 * convert a sampling rate into USB high speed format (fs/8000 in Q16.16)
 * this will overflow at approx 4 MHz
 */
static inline unsigned get_usb_high_speed_rate(unsigned int rate)
{
	return ((rate << 10) + 62) / 125;
}

/*
 * release a urb data
 */
static void release_urb_ctx(struct snd_urb_ctx *u)
{
89
90
91
92
93
94
	if (u->buffer_size)
		usb_free_coherent(u->ep->chip->dev, u->buffer_size,
				  u->urb->transfer_buffer,
				  u->urb->transfer_dma);
	usb_free_urb(u->urb);
	u->urb = NULL;
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
}

static const char *usb_error_string(int err)
{
	switch (err) {
	case -ENODEV:
		return "no device";
	case -ENOENT:
		return "endpoint not enabled";
	case -EPIPE:
		return "endpoint stalled";
	case -ENOSPC:
		return "not enough bandwidth";
	case -ESHUTDOWN:
		return "device disabled";
	case -EHOSTUNREACH:
		return "device suspended";
	case -EINVAL:
	case -EAGAIN:
	case -EFBIG:
	case -EMSGSIZE:
		return "internal error";
	default:
		return "unknown error";
	}
}

122
123
124
/**
 * snd_usb_endpoint_implicit_feedback_sink: Report endpoint usage type
 *
125
 * @ep: The snd_usb_endpoint
126
127
128
129
 *
 * Determine whether an endpoint is driven by an implicit feedback
 * data endpoint source.
 */
130
int snd_usb_endpoint_implicit_feedback_sink(struct snd_usb_endpoint *ep)
131
132
133
134
135
136
137
{
	return  ep->sync_master &&
		ep->sync_master->type == SND_USB_ENDPOINT_TYPE_DATA &&
		ep->type == SND_USB_ENDPOINT_TYPE_DATA &&
		usb_pipeout(ep->pipe);
}

138
139
140
141
142
143
144
/*
 * For streaming based on information derived from sync endpoints,
 * prepare_outbound_urb_sizes() will call next_packet_size() to
 * determine the number of samples to be sent in the next packet.
 *
 * For implicit feedback, next_packet_size() is unused.
 */
145
int snd_usb_endpoint_next_packet_size(struct snd_usb_endpoint *ep)
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
{
	unsigned long flags;
	int ret;

	if (ep->fill_max)
		return ep->maxframesize;

	spin_lock_irqsave(&ep->lock, flags);
	ep->phase = (ep->phase & 0xffff)
		+ (ep->freqm << ep->datainterval);
	ret = min(ep->phase >> 16, ep->maxframesize);
	spin_unlock_irqrestore(&ep->lock, flags);

	return ret;
}

static void retire_outbound_urb(struct snd_usb_endpoint *ep,
				struct snd_urb_ctx *urb_ctx)
{
	if (ep->retire_data_urb)
		ep->retire_data_urb(ep->data_subs, urb_ctx->urb);
}

static void retire_inbound_urb(struct snd_usb_endpoint *ep,
			       struct snd_urb_ctx *urb_ctx)
{
	struct urb *urb = urb_ctx->urb;

174
175
176
177
178
	if (unlikely(ep->skip_packets > 0)) {
		ep->skip_packets--;
		return;
	}

179
180
181
182
183
184
185
	if (ep->sync_slave)
		snd_usb_handle_sync_urb(ep->sync_slave, ep, urb);

	if (ep->retire_data_urb)
		ep->retire_data_urb(ep->data_subs, urb);
}

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
static void prepare_silent_urb(struct snd_usb_endpoint *ep,
			       struct snd_urb_ctx *ctx)
{
	struct urb *urb = ctx->urb;
	unsigned int offs = 0;
	int i;

	for (i = 0; i < ctx->packets; ++i) {
		int counts;

		if (ctx->packet_size[i])
			counts = ctx->packet_size[i];
		else
			counts = snd_usb_endpoint_next_packet_size(ep);

		urb->iso_frame_desc[i].offset = offs * ep->stride;
		urb->iso_frame_desc[i].length = counts * ep->stride;
		offs += counts;
	}

	urb->number_of_packets = ctx->packets;
	urb->transfer_buffer_length = offs * ep->stride;
	memset(urb->transfer_buffer, ep->silence_value,
	       offs * ep->stride);
}

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
/*
 * Prepare a PLAYBACK urb for submission to the bus.
 */
static void prepare_outbound_urb(struct snd_usb_endpoint *ep,
				 struct snd_urb_ctx *ctx)
{
	struct urb *urb = ctx->urb;
	unsigned char *cp = urb->transfer_buffer;

	urb->dev = ep->chip->dev; /* we need to set this at each time */

	switch (ep->type) {
	case SND_USB_ENDPOINT_TYPE_DATA:
		if (ep->prepare_data_urb) {
			ep->prepare_data_urb(ep->data_subs, urb);
		} else {
			/* no data provider, so send silence */
229
			prepare_silent_urb(ep, ctx);
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
		}
		break;

	case SND_USB_ENDPOINT_TYPE_SYNC:
		if (snd_usb_get_speed(ep->chip->dev) >= USB_SPEED_HIGH) {
			/*
			 * fill the length and offset of each urb descriptor.
			 * the fixed 12.13 frequency is passed as 16.16 through the pipe.
			 */
			urb->iso_frame_desc[0].length = 4;
			urb->iso_frame_desc[0].offset = 0;
			cp[0] = ep->freqn;
			cp[1] = ep->freqn >> 8;
			cp[2] = ep->freqn >> 16;
			cp[3] = ep->freqn >> 24;
		} else {
			/*
			 * fill the length and offset of each urb descriptor.
			 * the fixed 10.14 frequency is passed through the pipe.
			 */
			urb->iso_frame_desc[0].length = 3;
			urb->iso_frame_desc[0].offset = 0;
			cp[0] = ep->freqn >> 2;
			cp[1] = ep->freqn >> 10;
			cp[2] = ep->freqn >> 18;
		}

		break;
	}
}

/*
 * Prepare a CAPTURE or SYNC urb for submission to the bus.
 */
static inline void prepare_inbound_urb(struct snd_usb_endpoint *ep,
				       struct snd_urb_ctx *urb_ctx)
{
	int i, offs;
	struct urb *urb = urb_ctx->urb;

	urb->dev = ep->chip->dev; /* we need to set this at each time */

	switch (ep->type) {
	case SND_USB_ENDPOINT_TYPE_DATA:
		offs = 0;
		for (i = 0; i < urb_ctx->packets; i++) {
			urb->iso_frame_desc[i].offset = offs;
			urb->iso_frame_desc[i].length = ep->curpacksize;
			offs += ep->curpacksize;
		}

		urb->transfer_buffer_length = offs;
		urb->number_of_packets = urb_ctx->packets;
		break;

	case SND_USB_ENDPOINT_TYPE_SYNC:
		urb->iso_frame_desc[0].length = min(4u, ep->syncmaxsize);
		urb->iso_frame_desc[0].offset = 0;
		break;
	}
}

292
/*
293
 * Send output urbs that have been prepared previously. URBs are dequeued
294
295
296
297
 * from ep->ready_playback_urbs and in case there there aren't any available
 * or there are no packets that have been prepared, this function does
 * nothing.
 *
298
299
300
 * The reason why the functionality of sending and preparing URBs is separated
 * is that host controllers don't guarantee the order in which they return
 * inbound and outbound packets to their submitters.
301
302
 *
 * This function is only used for implicit feedback endpoints. For endpoints
303
304
 * driven by dedicated sync endpoints, URBs are immediately re-submitted
 * from their completion handler.
305
 */
306
307
308
309
310
static void queue_pending_output_urbs(struct snd_usb_endpoint *ep)
{
	while (test_bit(EP_FLAG_RUNNING, &ep->flags)) {

		unsigned long flags;
311
		struct snd_usb_packet_info *uninitialized_var(packet);
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
		struct snd_urb_ctx *ctx = NULL;
		struct urb *urb;
		int err, i;

		spin_lock_irqsave(&ep->lock, flags);
		if (ep->next_packet_read_pos != ep->next_packet_write_pos) {
			packet = ep->next_packet + ep->next_packet_read_pos;
			ep->next_packet_read_pos++;
			ep->next_packet_read_pos %= MAX_URBS;

			/* take URB out of FIFO */
			if (!list_empty(&ep->ready_playback_urbs))
				ctx = list_first_entry(&ep->ready_playback_urbs,
					       struct snd_urb_ctx, ready_list);
		}
		spin_unlock_irqrestore(&ep->lock, flags);

		if (ctx == NULL)
			return;

		list_del_init(&ctx->ready_list);
		urb = ctx->urb;

		/* copy over the length information */
		for (i = 0; i < packet->packets; i++)
			ctx->packet_size[i] = packet->packet_size[i];

339
		/* call the data handler to fill in playback data */
340
341
342
343
		prepare_outbound_urb(ep, ctx);

		err = usb_submit_urb(ctx->urb, GFP_ATOMIC);
		if (err < 0)
344
345
346
			usb_audio_err(ep->chip,
				"Unable to submit urb #%d: %d (urb %p)\n",
				ctx->index, err, ctx->urb);
347
348
349
350
351
352
353
354
355
356
357
358
		else
			set_bit(ctx->index, &ep->active_mask);
	}
}

/*
 * complete callback for urbs
 */
static void snd_complete_urb(struct urb *urb)
{
	struct snd_urb_ctx *ctx = urb->context;
	struct snd_usb_endpoint *ep = ctx->ep;
359
360
	struct snd_pcm_substream *substream;
	unsigned long flags;
361
362
363
364
365
	int err;

	if (unlikely(urb->status == -ENOENT ||		/* unlinked */
		     urb->status == -ENODEV ||		/* device removed */
		     urb->status == -ECONNRESET ||	/* unlinked */
366
367
368
369
		     urb->status == -ESHUTDOWN))	/* device disabled */
		goto exit_clear;
	/* device disconnected */
	if (unlikely(atomic_read(&ep->chip->shutdown)))
370
371
372
373
374
375
376
377
		goto exit_clear;

	if (usb_pipeout(ep->pipe)) {
		retire_outbound_urb(ep, ctx);
		/* can be stopped during retire callback */
		if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
			goto exit_clear;

378
		if (snd_usb_endpoint_implicit_feedback_sink(ep)) {
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
			spin_lock_irqsave(&ep->lock, flags);
			list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs);
			spin_unlock_irqrestore(&ep->lock, flags);
			queue_pending_output_urbs(ep);

			goto exit_clear;
		}

		prepare_outbound_urb(ep, ctx);
	} else {
		retire_inbound_urb(ep, ctx);
		/* can be stopped during retire callback */
		if (unlikely(!test_bit(EP_FLAG_RUNNING, &ep->flags)))
			goto exit_clear;

		prepare_inbound_urb(ep, ctx);
	}

	err = usb_submit_urb(urb, GFP_ATOMIC);
	if (err == 0)
		return;

401
	usb_audio_err(ep->chip, "cannot submit urb (err = %d)\n", err);
402
403
	if (ep->data_subs && ep->data_subs->pcm_substream) {
		substream = ep->data_subs->pcm_substream;
404
		snd_pcm_stop_xrun(substream);
405
	}
406
407
408
409
410

exit_clear:
	clear_bit(ctx->index, &ep->active_mask);
}

411
/**
412
 * snd_usb_add_endpoint: Add an endpoint to an USB audio chip
413
414
415
416
417
418
419
420
421
422
423
424
425
426
 *
 * @chip: The chip
 * @alts: The USB host interface
 * @ep_num: The number of the endpoint to use
 * @direction: SNDRV_PCM_STREAM_PLAYBACK or SNDRV_PCM_STREAM_CAPTURE
 * @type: SND_USB_ENDPOINT_TYPE_DATA or SND_USB_ENDPOINT_TYPE_SYNC
 *
 * If the requested endpoint has not been added to the given chip before,
 * a new instance is created. Otherwise, a pointer to the previoulsy
 * created instance is returned. In case of any error, NULL is returned.
 *
 * New endpoints will be added to chip->ep_list and must be freed by
 * calling snd_usb_endpoint_free().
 */
427
428
429
430
431
struct snd_usb_endpoint *snd_usb_add_endpoint(struct snd_usb_audio *chip,
					      struct usb_host_interface *alts,
					      int ep_num, int direction, int type)
{
	struct snd_usb_endpoint *ep;
432
	int is_playback = direction == SNDRV_PCM_STREAM_PLAYBACK;
433

434
435
436
	if (WARN_ON(!alts))
		return NULL;

437
438
	mutex_lock(&chip->mutex);

439
	list_for_each_entry(ep, &chip->ep_list, list) {
440
441
		if (ep->ep_num == ep_num &&
		    ep->iface == alts->desc.bInterfaceNumber &&
442
		    ep->altsetting == alts->desc.bAlternateSetting) {
443
444
			usb_audio_dbg(ep->chip,
				      "Re-using EP %x in iface %d,%d @%p\n",
445
					ep_num, ep->iface, ep->altsetting, ep);
446
447
448
449
			goto __exit_unlock;
		}
	}

450
	usb_audio_dbg(chip, "Creating new %s %s endpoint #%x\n",
451
452
453
454
455
456
457
458
459
460
461
462
463
		    is_playback ? "playback" : "capture",
		    type == SND_USB_ENDPOINT_TYPE_DATA ? "data" : "sync",
		    ep_num);

	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
	if (!ep)
		goto __exit_unlock;

	ep->chip = chip;
	spin_lock_init(&ep->lock);
	ep->type = type;
	ep->ep_num = ep_num;
	ep->iface = alts->desc.bInterfaceNumber;
464
	ep->altsetting = alts->desc.bAlternateSetting;
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
	INIT_LIST_HEAD(&ep->ready_playback_urbs);
	ep_num &= USB_ENDPOINT_NUMBER_MASK;

	if (is_playback)
		ep->pipe = usb_sndisocpipe(chip->dev, ep_num);
	else
		ep->pipe = usb_rcvisocpipe(chip->dev, ep_num);

	if (type == SND_USB_ENDPOINT_TYPE_SYNC) {
		if (get_endpoint(alts, 1)->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE &&
		    get_endpoint(alts, 1)->bRefresh >= 1 &&
		    get_endpoint(alts, 1)->bRefresh <= 9)
			ep->syncinterval = get_endpoint(alts, 1)->bRefresh;
		else if (snd_usb_get_speed(chip->dev) == USB_SPEED_FULL)
			ep->syncinterval = 1;
		else if (get_endpoint(alts, 1)->bInterval >= 1 &&
			 get_endpoint(alts, 1)->bInterval <= 16)
			ep->syncinterval = get_endpoint(alts, 1)->bInterval - 1;
		else
			ep->syncinterval = 3;

		ep->syncmaxsize = le16_to_cpu(get_endpoint(alts, 1)->wMaxPacketSize);
487
488
489
490

		if (chip->usb_id == USB_ID(0x0644, 0x8038) /* TEAC UD-H01 */ &&
		    ep->syncmaxsize == 4)
			ep->udh01_fb_quirk = 1;
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
	}

	list_add_tail(&ep->list, &chip->ep_list);

__exit_unlock:
	mutex_unlock(&chip->mutex);

	return ep;
}

/*
 *  wait until all urbs are processed.
 */
static int wait_clear_urbs(struct snd_usb_endpoint *ep)
{
	unsigned long end_time = jiffies + msecs_to_jiffies(1000);
	int alive;

	do {
510
		alive = bitmap_weight(&ep->active_mask, ep->nurbs);
511
512
513
514
515
516
517
		if (!alive)
			break;

		schedule_timeout_uninterruptible(1);
	} while (time_before(jiffies, end_time));

	if (alive)
518
519
520
		usb_audio_err(ep->chip,
			"timeout: still %d active urbs on EP #%x\n",
			alive, ep->ep_num);
521
	clear_bit(EP_FLAG_STOPPING, &ep->flags);
522
523
524
525

	return 0;
}

526
527
528
529
530
531
532
533
534
/* sync the pending stop operation;
 * this function itself doesn't trigger the stop operation
 */
void snd_usb_endpoint_sync_pending_stop(struct snd_usb_endpoint *ep)
{
	if (ep && test_bit(EP_FLAG_STOPPING, &ep->flags))
		wait_clear_urbs(ep);
}

535
536
537
/*
 * unlink active urbs.
 */
538
static int deactivate_urbs(struct snd_usb_endpoint *ep, bool force)
539
540
541
{
	unsigned int i;

542
	if (!force && atomic_read(&ep->chip->shutdown)) /* to be sure... */
543
544
545
546
547
548
549
550
551
552
553
554
		return -EBADFD;

	clear_bit(EP_FLAG_RUNNING, &ep->flags);

	INIT_LIST_HEAD(&ep->ready_playback_urbs);
	ep->next_packet_read_pos = 0;
	ep->next_packet_write_pos = 0;

	for (i = 0; i < ep->nurbs; i++) {
		if (test_bit(i, &ep->active_mask)) {
			if (!test_and_set_bit(i, &ep->unlink_mask)) {
				struct urb *u = ep->urb[i].urb;
555
				usb_unlink_urb(u);
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
			}
		}
	}

	return 0;
}

/*
 * release an endpoint's urbs
 */
static void release_urbs(struct snd_usb_endpoint *ep, int force)
{
	int i;

	/* route incoming urbs to nirvana */
	ep->retire_data_urb = NULL;
	ep->prepare_data_urb = NULL;

	/* stop urbs */
575
	deactivate_urbs(ep, force);
576
577
578
579
580
581
582
583
584
585
586
587
588
	wait_clear_urbs(ep);

	for (i = 0; i < ep->nurbs; i++)
		release_urb_ctx(&ep->urb[i]);

	if (ep->syncbuf)
		usb_free_coherent(ep->chip->dev, SYNC_URBS * 4,
				  ep->syncbuf, ep->sync_dma);

	ep->syncbuf = NULL;
	ep->nurbs = 0;
}

589
590
591
/*
 * configure a data endpoint
 */
592
static int data_ep_set_params(struct snd_usb_endpoint *ep,
593
594
595
			      snd_pcm_format_t pcm_format,
			      unsigned int channels,
			      unsigned int period_bytes,
596
597
			      unsigned int frames_per_period,
			      unsigned int periods_per_buffer,
598
599
600
			      struct audioformat *fmt,
			      struct snd_usb_endpoint *sync_ep)
{
601
602
603
	unsigned int maxsize, minsize, packs_per_ms, max_packs_per_urb;
	unsigned int max_packs_per_period, urbs_per_period, urb_packs;
	unsigned int max_urbs, i;
604
	int frame_bits = snd_pcm_format_physical_width(pcm_format) * channels;
605

606
607
608
609
610
611
612
613
614
	if (pcm_format == SNDRV_PCM_FORMAT_DSD_U16_LE && fmt->dsd_dop) {
		/*
		 * When operating in DSD DOP mode, the size of a sample frame
		 * in hardware differs from the actual physical format width
		 * because we need to make room for the DOP markers.
		 */
		frame_bits += channels << 3;
	}

615
616
	ep->datainterval = fmt->datainterval;
	ep->stride = frame_bits >> 3;
617
	ep->silence_value = pcm_format == SNDRV_PCM_FORMAT_U8 ? 0x80 : 0;
618

619
620
	/* assume max. frequency is 25% higher than nominal */
	ep->freqmax = ep->freqn + (ep->freqn >> 2);
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
	/* Round up freqmax to nearest integer in order to calculate maximum
	 * packet size, which must represent a whole number of frames.
	 * This is accomplished by adding 0x0.ffff before converting the
	 * Q16.16 format into integer.
	 * In order to accurately calculate the maximum packet size when
	 * the data interval is more than 1 (i.e. ep->datainterval > 0),
	 * multiply by the data interval prior to rounding. For instance,
	 * a freqmax of 41 kHz will result in a max packet size of 6 (5.125)
	 * frames with a data interval of 1, but 11 (10.25) frames with a
	 * data interval of 2.
	 * (ep->freqmax << ep->datainterval overflows at 8.192 MHz for the
	 * maximum datainterval value of 3, at USB full speed, higher for
	 * USB high speed, noting that ep->freqmax is in units of
	 * frames per packet in Q16.16 format.)
	 */
	maxsize = (((ep->freqmax << ep->datainterval) + 0xffff) >> 16) *
			 (frame_bits >> 3);
638
639
	/* but wMaxPacketSize might reduce this */
	if (ep->maxpacksize && ep->maxpacksize < maxsize) {
640
641
642
643
644
645
646
647
648
649
650
		/* whatever fits into a max. size packet */
		maxsize = ep->maxpacksize;
		ep->freqmax = (maxsize / (frame_bits >> 3))
				<< (16 - ep->datainterval);
	}

	if (ep->fill_max)
		ep->curpacksize = ep->maxpacksize;
	else
		ep->curpacksize = maxsize;

651
	if (snd_usb_get_speed(ep->chip->dev) != USB_SPEED_FULL) {
652
		packs_per_ms = 8 >> ep->datainterval;
653
		max_packs_per_urb = MAX_PACKS_HS;
654
	} else {
655
656
		packs_per_ms = 1;
		max_packs_per_urb = MAX_PACKS;
657
	}
658
	if (sync_ep && !snd_usb_endpoint_implicit_feedback_sink(ep))
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
		max_packs_per_urb = min(max_packs_per_urb,
					1U << sync_ep->syncinterval);
	max_packs_per_urb = max(1u, max_packs_per_urb >> ep->datainterval);

	/*
	 * Capture endpoints need to use small URBs because there's no way
	 * to tell in advance where the next period will end, and we don't
	 * want the next URB to complete much after the period ends.
	 *
	 * Playback endpoints with implicit sync much use the same parameters
	 * as their corresponding capture endpoint.
	 */
	if (usb_pipein(ep->pipe) ||
			snd_usb_endpoint_implicit_feedback_sink(ep)) {

674
675
676
677
678
679
680
681
682
683
684
685
686
687
		urb_packs = packs_per_ms;
		/*
		 * Wireless devices can poll at a max rate of once per 4ms.
		 * For dataintervals less than 5, increase the packet count to
		 * allow the host controller to use bursting to fill in the
		 * gaps.
		 */
		if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_WIRELESS) {
			int interval = ep->datainterval;
			while (interval < 5) {
				urb_packs <<= 1;
				++interval;
			}
		}
688
		/* make capture URBs <= 1 ms and smaller than a period */
689
		urb_packs = min(max_packs_per_urb, urb_packs);
690
691
692
		while (urb_packs > 1 && urb_packs * maxsize >= period_bytes)
			urb_packs >>= 1;
		ep->nurbs = MAX_URBS;
693

694
695
696
697
698
699
700
	/*
	 * Playback endpoints without implicit sync are adjusted so that
	 * a period fits as evenly as possible in the smallest number of
	 * URBs.  The total number of URBs is adjusted to the size of the
	 * ALSA buffer, subject to the MAX_URBS and MAX_QUEUE limits.
	 */
	} else {
701
		/* determine how small a packet can be */
702
703
		minsize = (ep->freqn >> (16 - ep->datainterval)) *
				(frame_bits >> 3);
704
705
706
707
708
		/* with sync from device, assume it can be 12% lower */
		if (sync_ep)
			minsize -= minsize >> 3;
		minsize = max(minsize, 1u);

709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
		/* how many packets will contain an entire ALSA period? */
		max_packs_per_period = DIV_ROUND_UP(period_bytes, minsize);

		/* how many URBs will contain a period? */
		urbs_per_period = DIV_ROUND_UP(max_packs_per_period,
				max_packs_per_urb);
		/* how many packets are needed in each URB? */
		urb_packs = DIV_ROUND_UP(max_packs_per_period, urbs_per_period);

		/* limit the number of frames in a single URB */
		ep->max_urb_frames = DIV_ROUND_UP(frames_per_period,
					urbs_per_period);

		/* try to use enough URBs to contain an entire ALSA buffer */
		max_urbs = min((unsigned) MAX_URBS,
				MAX_QUEUE * packs_per_ms / urb_packs);
		ep->nurbs = min(max_urbs, urbs_per_period * periods_per_buffer);
726
727
728
729
730
731
732
	}

	/* allocate and initialize data urbs */
	for (i = 0; i < ep->nurbs; i++) {
		struct snd_urb_ctx *u = &ep->urb[i];
		u->index = i;
		u->ep = ep;
733
		u->packets = urb_packs;
734
735
736
737
738
739
740
741
742
743
744
745
746
747
		u->buffer_size = maxsize * u->packets;

		if (fmt->fmt_type == UAC_FORMAT_TYPE_II)
			u->packets++; /* for transfer delimiter */
		u->urb = usb_alloc_urb(u->packets, GFP_KERNEL);
		if (!u->urb)
			goto out_of_memory;

		u->urb->transfer_buffer =
			usb_alloc_coherent(ep->chip->dev, u->buffer_size,
					   GFP_KERNEL, &u->urb->transfer_dma);
		if (!u->urb->transfer_buffer)
			goto out_of_memory;
		u->urb->pipe = ep->pipe;
748
		u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
749
750
751
752
753
754
755
756
757
758
759
760
761
		u->urb->interval = 1 << ep->datainterval;
		u->urb->context = u;
		u->urb->complete = snd_complete_urb;
		INIT_LIST_HEAD(&u->ready_list);
	}

	return 0;

out_of_memory:
	release_urbs(ep, 0);
	return -ENOMEM;
}

762
763
764
/*
 * configure a sync endpoint
 */
765
static int sync_ep_set_params(struct snd_usb_endpoint *ep)
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
{
	int i;

	ep->syncbuf = usb_alloc_coherent(ep->chip->dev, SYNC_URBS * 4,
					 GFP_KERNEL, &ep->sync_dma);
	if (!ep->syncbuf)
		return -ENOMEM;

	for (i = 0; i < SYNC_URBS; i++) {
		struct snd_urb_ctx *u = &ep->urb[i];
		u->index = i;
		u->ep = ep;
		u->packets = 1;
		u->urb = usb_alloc_urb(1, GFP_KERNEL);
		if (!u->urb)
			goto out_of_memory;
		u->urb->transfer_buffer = ep->syncbuf + i * 4;
		u->urb->transfer_dma = ep->sync_dma + i * 4;
		u->urb->transfer_buffer_length = 4;
		u->urb->pipe = ep->pipe;
786
		u->urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
		u->urb->number_of_packets = 1;
		u->urb->interval = 1 << ep->syncinterval;
		u->urb->context = u;
		u->urb->complete = snd_complete_urb;
	}

	ep->nurbs = SYNC_URBS;

	return 0;

out_of_memory:
	release_urbs(ep, 0);
	return -ENOMEM;
}

802
/**
803
 * snd_usb_endpoint_set_params: configure an snd_usb_endpoint
804
 *
805
 * @ep: the snd_usb_endpoint to configure
806
807
808
 * @pcm_format: the audio fomat.
 * @channels: the number of audio channels.
 * @period_bytes: the number of bytes in one alsa period.
809
810
 * @period_frames: the number of frames in one alsa period.
 * @buffer_periods: the number of periods in one alsa buffer.
811
 * @rate: the frame rate.
812
813
 * @fmt: the USB audio format information
 * @sync_ep: the sync endpoint to use, if any
814
 *
815
 * Determine the number of URBs to be used on this endpoint.
816
817
818
 * An endpoint must be configured before it can be started.
 * An endpoint that is already running can not be reconfigured.
 */
819
int snd_usb_endpoint_set_params(struct snd_usb_endpoint *ep,
820
821
822
				snd_pcm_format_t pcm_format,
				unsigned int channels,
				unsigned int period_bytes,
823
824
				unsigned int period_frames,
				unsigned int buffer_periods,
825
				unsigned int rate,
826
827
828
829
830
831
				struct audioformat *fmt,
				struct snd_usb_endpoint *sync_ep)
{
	int err;

	if (ep->use_count != 0) {
832
833
834
		usb_audio_warn(ep->chip,
			 "Unable to change format on ep #%x: already in use\n",
			 ep->ep_num);
835
836
837
838
839
840
841
842
		return -EBUSY;
	}

	/* release old buffers, if any */
	release_urbs(ep, 0);

	ep->datainterval = fmt->datainterval;
	ep->maxpacksize = fmt->maxpacksize;
843
	ep->fill_max = !!(fmt->attributes & UAC_EP_CS_ATTR_FILL_MAX);
844
845

	if (snd_usb_get_speed(ep->chip->dev) == USB_SPEED_FULL)
846
		ep->freqn = get_usb_full_speed_rate(rate);
847
	else
848
		ep->freqn = get_usb_high_speed_rate(rate);
849
850
851
852
853
854
855
856
857

	/* calculate the frequency in 16.16 format */
	ep->freqm = ep->freqn;
	ep->freqshift = INT_MIN;

	ep->phase = 0;

	switch (ep->type) {
	case  SND_USB_ENDPOINT_TYPE_DATA:
858
		err = data_ep_set_params(ep, pcm_format, channels,
859
860
					 period_bytes, period_frames,
					 buffer_periods, fmt, sync_ep);
861
862
		break;
	case  SND_USB_ENDPOINT_TYPE_SYNC:
863
		err = sync_ep_set_params(ep);
864
865
866
867
868
		break;
	default:
		err = -EINVAL;
	}

869
870
871
	usb_audio_dbg(ep->chip,
		"Setting params for ep #%x (type %d, %d urbs), ret=%d\n",
		ep->ep_num, ep->type, ep->nurbs, err);
872
873
874
875

	return err;
}

876
877
878
/**
 * snd_usb_endpoint_start: start an snd_usb_endpoint
 *
879
880
881
 * @ep:		the endpoint to start
 * @can_sleep:	flag indicating whether the operation is executed in
 * 		non-atomic context
882
883
 *
 * A call to this function will increment the use count of the endpoint.
884
 * In case it is not already running, the URBs for this endpoint will be
885
886
887
888
889
890
 * submitted. Otherwise, this function does nothing.
 *
 * Must be balanced to calls of snd_usb_endpoint_stop().
 *
 * Returns an error if the URB submission failed, 0 in all other cases.
 */
891
int snd_usb_endpoint_start(struct snd_usb_endpoint *ep, bool can_sleep)
892
893
894
895
{
	int err;
	unsigned int i;

896
	if (atomic_read(&ep->chip->shutdown))
897
898
899
900
901
902
		return -EBADFD;

	/* already running? */
	if (++ep->use_count != 1)
		return 0;

903
	/* just to be sure */
904
	deactivate_urbs(ep, false);
905
906
907
	if (can_sleep)
		wait_clear_urbs(ep);

908
909
910
911
	ep->active_mask = 0;
	ep->unlink_mask = 0;
	ep->phase = 0;

912
913
	snd_usb_endpoint_start_quirk(ep);

914
915
916
	/*
	 * If this endpoint has a data endpoint as implicit feedback source,
	 * don't start the urbs here. Instead, mark them all as available,
917
918
	 * wait for the record urbs to return and queue the playback urbs
	 * from that context.
919
920
921
922
	 */

	set_bit(EP_FLAG_RUNNING, &ep->flags);

923
	if (snd_usb_endpoint_implicit_feedback_sink(ep)) {
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
		for (i = 0; i < ep->nurbs; i++) {
			struct snd_urb_ctx *ctx = ep->urb + i;
			list_add_tail(&ctx->ready_list, &ep->ready_playback_urbs);
		}

		return 0;
	}

	for (i = 0; i < ep->nurbs; i++) {
		struct urb *urb = ep->urb[i].urb;

		if (snd_BUG_ON(!urb))
			goto __error;

		if (usb_pipeout(ep->pipe)) {
			prepare_outbound_urb(ep, urb->context);
		} else {
			prepare_inbound_urb(ep, urb->context);
		}

		err = usb_submit_urb(urb, GFP_ATOMIC);
		if (err < 0) {
946
947
948
			usb_audio_err(ep->chip,
				"cannot submit urb %d, error %d: %s\n",
				i, err, usb_error_string(err));
949
950
951
952
953
954
955
956
957
958
			goto __error;
		}
		set_bit(i, &ep->active_mask);
	}

	return 0;

__error:
	clear_bit(EP_FLAG_RUNNING, &ep->flags);
	ep->use_count--;
959
	deactivate_urbs(ep, false);
960
961
962
	return -EPIPE;
}

963
964
965
966
967
968
969
/**
 * snd_usb_endpoint_stop: stop an snd_usb_endpoint
 *
 * @ep: the endpoint to stop (may be NULL)
 *
 * A call to this function will decrement the use count of the endpoint.
 * In case the last user has requested the endpoint stop, the URBs will
970
 * actually be deactivated.
971
972
 *
 * Must be balanced to calls of snd_usb_endpoint_start().
973
974
975
 *
 * The caller needs to synchronize the pending stop operation via
 * snd_usb_endpoint_sync_pending_stop().
976
 */
977
void snd_usb_endpoint_stop(struct snd_usb_endpoint *ep)
978
979
980
981
982
983
984
985
{
	if (!ep)
		return;

	if (snd_BUG_ON(ep->use_count == 0))
		return;

	if (--ep->use_count == 0) {
986
		deactivate_urbs(ep, false);
987
988
989
990
		ep->data_subs = NULL;
		ep->sync_slave = NULL;
		ep->retire_data_urb = NULL;
		ep->prepare_data_urb = NULL;
991
		set_bit(EP_FLAG_STOPPING, &ep->flags);
992
993
994
	}
}

995
996
997
998
999
/**
 * snd_usb_endpoint_deactivate: deactivate an snd_usb_endpoint
 *
 * @ep: the endpoint to deactivate
 *
1000
 * If the endpoint is not currently in use, this functions will