inode.c 171 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23
24
25
26
27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29
30
31
32
33
34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38
39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include <linux/workqueue.h>
41
#include <linux/kernel.h>
42
#include <linux/slab.h>
43
#include <linux/ratelimit.h>
44

45
#include "ext4_jbd2.h"
46
47
#include "xattr.h"
#include "acl.h"
48
#include "ext4_extents.h"
49

50
51
#include <trace/events/ext4.h>

52
53
#define MPAGE_DA_EXTENT_TAIL 0x01

54
55
56
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
57
	trace_ext4_begin_ordered_truncate(inode, new_size);
58
59
60
61
62
63
64
65
66
67
68
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
69
70
}

71
static void ext4_invalidatepage(struct page *page, unsigned long offset);
72
73
74
75
76
77
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
78

79
80
81
/*
 * Test whether an inode is a fast symlink.
 */
82
static int ext4_inode_is_fast_symlink(struct inode *inode)
83
{
84
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
85
86
87
88
89
90
91
92
93
94
95
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
96
	ext4_lblk_t needed;
97
98
99
100
101
102

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
103
	 * like a regular file for ext4 to try to delete it.  Things
104
105
106
107
108
109
110
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
111
112
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
113

114
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

131
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
132
133
134
	if (!IS_ERR(result))
		return result;

135
	ext4_std_error(inode->i_sb, PTR_ERR(result));
136
137
138
139
140
141
142
143
144
145
146
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
147
148
149
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
150
		return 0;
151
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
152
153
154
155
156
157
158
159
160
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
161
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162
				 int nblocks)
163
{
164
165
166
	int ret;

	/*
167
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168
169
170
171
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
172
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
173
	jbd_debug(2, "restarting handle %p\n", handle);
174
175
176
	up_write(&EXT4_I(inode)->i_data_sem);
	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
	down_write(&EXT4_I(inode)->i_data_sem);
177
	ext4_discard_preallocations(inode);
178
179

	return ret;
180
181
182
183
184
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
Al Viro's avatar
Al Viro committed
185
void ext4_evict_inode(struct inode *inode)
186
187
{
	handle_t *handle;
188
	int err;
189

190
	trace_ext4_evict_inode(inode);
Al Viro's avatar
Al Viro committed
191
192
193
194
195
	if (inode->i_nlink) {
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

196
	if (!is_bad_inode(inode))
197
		dquot_initialize(inode);
198

199
200
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
201
202
203
204
205
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

206
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
207
	if (IS_ERR(handle)) {
208
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
209
210
211
212
213
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
214
		ext4_orphan_del(NULL, inode);
215
216
217
218
		goto no_delete;
	}

	if (IS_SYNC(inode))
219
		ext4_handle_sync(handle);
220
	inode->i_size = 0;
221
222
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
223
		ext4_warning(inode->i_sb,
224
225
226
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
227
	if (inode->i_blocks)
228
		ext4_truncate(inode);
229
230
231
232
233
234
235

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
236
	if (!ext4_handle_has_enough_credits(handle, 3)) {
237
238
239
240
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
241
			ext4_warning(inode->i_sb,
242
243
244
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
245
			ext4_orphan_del(NULL, inode);
246
247
248
249
			goto no_delete;
		}
	}

250
	/*
251
	 * Kill off the orphan record which ext4_truncate created.
252
	 * AKPM: I think this can be inside the above `if'.
253
	 * Note that ext4_orphan_del() has to be able to cope with the
254
	 * deletion of a non-existent orphan - this is because we don't
255
	 * know if ext4_truncate() actually created an orphan record.
256
257
	 * (Well, we could do this if we need to, but heck - it works)
	 */
258
259
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
260
261
262
263
264
265
266
267

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
268
	if (ext4_mark_inode_dirty(handle, inode))
269
		/* If that failed, just do the required in-core inode clear. */
Al Viro's avatar
Al Viro committed
270
		ext4_clear_inode(inode);
271
	else
272
273
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
274
275
	return;
no_delete:
Al Viro's avatar
Al Viro committed
276
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
292
 *	ext4_block_to_path - parse the block number into array of offsets
293
294
295
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
Dave Kleikamp's avatar
Dave Kleikamp committed
296
297
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
298
 *
299
 *	To store the locations of file's data ext4 uses a data structure common
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

322
static int ext4_block_to_path(struct inode *inode,
323
324
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
325
{
326
327
328
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
329
330
331
332
333
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

334
	if (i_block < direct_blocks) {
335
336
		offsets[n++] = i_block;
		final = direct_blocks;
337
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
338
		offsets[n++] = EXT4_IND_BLOCK;
339
340
341
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
342
		offsets[n++] = EXT4_DIND_BLOCK;
343
344
345
346
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
347
		offsets[n++] = EXT4_TIND_BLOCK;
348
349
350
351
352
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
353
		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
354
355
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
356
357
358
359
360
361
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

362
363
static int __ext4_check_blockref(const char *function, unsigned int line,
				 struct inode *inode,
364
365
				 __le32 *p, unsigned int max)
{
366
	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
367
	__le32 *bref = p;
368
369
	unsigned int blk;

370
	while (bref < p+max) {
371
		blk = le32_to_cpu(*bref++);
372
373
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
374
						    blk, 1))) {
375
			es->s_last_error_block = cpu_to_le64(blk);
376
377
			ext4_error_inode(inode, function, line, blk,
					 "invalid block");
378
379
380
381
			return -EIO;
		}
	}
	return 0;
382
383
384
385
}


#define ext4_check_indirect_blockref(inode, bh)                         \
386
387
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      (__le32 *)(bh)->b_data,			\
388
389
390
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
391
392
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      EXT4_I(inode)->i_data,			\
393
394
			      EXT4_NDIR_BLOCKS)

395
/**
396
 *	ext4_get_branch - read the chain of indirect blocks leading to data
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
421
422
 *
 *      Need to be called with
423
 *      down_read(&EXT4_I(inode)->i_data_sem)
424
 */
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
425
426
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
427
428
429
430
431
432
433
434
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
435
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
436
437
438
	if (!p->key)
		goto no_block;
	while (--depth) {
439
440
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
441
			goto failure;
442

443
444
445
446
447
448
449
450
451
452
453
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
454

455
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
456
457
458
459
460
461
462
463
464
465
466
467
468
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
469
 *	ext4_find_near - find a place for allocation with sufficient locality
470
471
472
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
473
 *	This function returns the preferred place for block allocation.
474
475
476
477
478
479
480
481
482
483
484
485
486
487
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
488
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
489
{
490
	struct ext4_inode_info *ei = EXT4_I(inode);
491
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
492
	__le32 *p;
493
	ext4_fsblk_t bg_start;
494
	ext4_fsblk_t last_block;
495
	ext4_grpblk_t colour;
496
497
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
513
514
515
516
517
518
519
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
520
521
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

522
523
524
525
526
527
528
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

529
530
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
531
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
532
533
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
534
535
536
537
	return bg_start + colour;
}

/**
538
 *	ext4_find_goal - find a preferred place for allocation.
539
540
541
542
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
543
 *	Normally this function find the preferred place for block allocation,
544
 *	returns it.
545
546
 *	Because this is only used for non-extent files, we limit the block nr
 *	to 32 bits.
547
 */
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
548
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
549
				   Indirect *partial)
550
{
551
552
	ext4_fsblk_t goal;

553
	/*
554
	 * XXX need to get goal block from mballoc's data structures
555
556
	 */

557
558
559
	goal = ext4_find_near(inode, partial);
	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
	return goal;
560
561
562
}

/**
563
 *	ext4_blks_to_allocate - Look up the block map and count the number
564
565
566
567
568
569
570
571
572
573
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
574
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
575
				 int blocks_to_boundary)
576
{
577
	unsigned int count = 0;
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
601
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
602
603
604
605
 *	@handle: handle for this transaction
 *	@inode: inode which needs allocated blocks
 *	@iblock: the logical block to start allocated at
 *	@goal: preferred physical block of allocation
606
607
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
608
 *	@blks: number of desired blocks
609
610
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
611
612
613
614
 *	@err: on return it will store the error code
 *
 *	This function will return the number of blocks allocated as
 *	requested by the passed-in parameters.
615
 */
616
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
617
618
619
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
620
{
621
	struct ext4_allocation_request ar;
622
	int target, i;
623
	unsigned long count = 0, blk_allocated = 0;
624
	int index = 0;
625
	ext4_fsblk_t current_block = 0;
626
627
628
629
630
631
632
633
634
635
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
636
637
638
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
639
640
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
641
642
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
643
644
645
		if (*err)
			goto failed_out;

646
647
648
649
650
651
652
653
		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
			EXT4_ERROR_INODE(inode,
					 "current_block %llu + count %lu > %d!",
					 current_block, count,
					 EXT4_MAX_BLOCK_FILE_PHYS);
			*err = -EIO;
			goto failed_out;
		}
654

655
656
657
658
659
660
		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
661
662
663
664
665
666
667
668
669
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
670
			break;
671
		}
672
673
	}

674
675
676
677
678
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
679
680
681
682
683
684
685
686
687
688
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);
689
690
691
692
693
694
695
696
	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
		EXT4_ERROR_INODE(inode,
				 "current_block %llu + ar.len %d > %d!",
				 current_block, ar.len,
				 EXT4_MAX_BLOCK_FILE_PHYS);
		*err = -EIO;
		goto failed_out;
	}
697

698
699
700
701
702
703
704
705
706
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
707
708
709
710
			/*
			 * save the new block number
			 * for the first direct block
			 */
711
712
			new_blocks[index] = current_block;
		}
713
		blk_allocated += ar.len;
714
715
	}
allocated:
716
	/* total number of blocks allocated for direct blocks */
717
	ret = blk_allocated;
718
719
720
	*err = 0;
	return ret;
failed_out:
721
	for (i = 0; i < index; i++)
722
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
723
724
725
726
	return ret;
}

/**
727
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
728
 *	@handle: handle for this transaction
729
730
731
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
732
 *	@goal: preferred place for allocation
733
734
735
736
737
738
739
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
740
 *	the same format as ext4_get_branch() would do. We are calling it after
741
742
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
743
 *	picture as after the successful ext4_get_block(), except that in one
744
745
746
747
748
749
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
750
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
751
752
 *	as described above and return 0.
 */
753
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
754
755
756
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
757
758
759
760
761
762
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
763
764
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
765

766
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
782
783
784
785
786
		if (unlikely(!bh)) {
			err = -EIO;
			goto failed;
		}

787
788
789
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
790
		err = ext4_journal_get_create_access(handle, bh);
791
		if (err) {
792
793
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
794
795
796
797
798
799
800
801
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
802
		if (n == indirect_blks) {
803
804
805
806
807
808
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
809
			for (i = 1; i < num; i++)
810
811
812
813
814
815
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

816
817
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
818
819
820
821
822
823
824
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
825
	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
826
	for (i = 1; i <= n ; i++) {
827
		/*
828
829
830
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
831
		 */
832
833
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
				 EXT4_FREE_BLOCKS_FORGET);
834
	}
835
836
	for (i = n+1; i < indirect_blks; i++)
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
837

838
	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
839
840
841
842
843

	return err;
}

/**
844
 * ext4_splice_branch - splice the allocated branch onto inode.
845
 * @handle: handle for this transaction
846
847
848
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
849
 *	ext4_alloc_branch)
850
851
852
853
854
855
856
857
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
858
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
859
860
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
861
862
863
{
	int i;
	int err = 0;
864
	ext4_fsblk_t current_block;
865
866
867
868
869
870
871
872

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
873
		err = ext4_journal_get_write_access(handle, where->bh);
874
875
876
877
878
879
880
881
882
883
884
885
886
887
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
888
			*(where->p + i) = cpu_to_le32(current_block++);
889
890
891
892
893
894
895
896
897
898
899
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
900
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
901
902
		 */
		jbd_debug(5, "splicing indirect only\n");
903
904
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
905
906
907
908
909
910
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
911
		ext4_mark_inode_dirty(handle, inode);
912
913
914
915
916
917
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
918
		/*
919
920
921
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
922
		 */
923
924
		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
				 EXT4_FREE_BLOCKS_FORGET);
925
	}
926
927
	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
			 blks, 0);
928
929
930
931
932

	return err;
}

/*
933
 * The ext4_ind_map_blocks() function handles non-extents inodes
934
 * (i.e., using the traditional indirect/double-indirect i_blocks
935
 * scheme) for ext4_map_blocks().
936
 *
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
953
 *
954
955
956
957
958
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
959
 */
960
961
static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
			       struct ext4_map_blocks *map,
962
			       int flags)
963
964
{
	int err = -EIO;
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
965
	ext4_lblk_t offsets[4];
966
967
	Indirect chain[4];
	Indirect *partial;
968
	ext4_fsblk_t goal;
969
970
971
972
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
973
	ext4_fsblk_t first_block = 0;
974

975
	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
976
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
977
	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
978
				   &blocks_to_boundary);
979
980
981
982

	if (depth == 0)
		goto out;

983
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
984
985
986
987
988
989

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		count++;
		/*map more blocks*/
990
		while (count < map->m_len && count <= blocks_to_boundary) {
991
			ext4_fsblk_t blk;
992
993
994
995
996
997
998
999

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
1000
		goto got_it;
For faster browsing, not all history is shown. View entire blame