inode.c 174 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23
24
25
26
27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29
30
31
32
33
34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38
39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include <linux/workqueue.h>
41
#include <linux/kernel.h>
42
#include <linux/slab.h>
43

44
#include "ext4_jbd2.h"
45
46
#include "xattr.h"
#include "acl.h"
47
#include "ext4_extents.h"
48

49
50
#include <trace/events/ext4.h>

51
52
#define MPAGE_DA_EXTENT_TAIL 0x01

53
54
55
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
56
57
58
59
	return jbd2_journal_begin_ordered_truncate(
					EXT4_SB(inode->i_sb)->s_journal,
					&EXT4_I(inode)->jinode,
					new_size);
60
61
}

62
63
static void ext4_invalidatepage(struct page *page, unsigned long offset);

64
65
66
/*
 * Test whether an inode is a fast symlink.
 */
67
static int ext4_inode_is_fast_symlink(struct inode *inode)
68
{
69
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
70
71
72
73
74
75
76
77
78
79
80
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
81
	ext4_lblk_t needed;
82
83
84
85
86
87

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
88
	 * like a regular file for ext4 to try to delete it.  Things
89
90
91
92
93
94
95
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
96
97
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
98

99
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

116
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
117
118
119
	if (!IS_ERR(result))
		return result;

120
	ext4_std_error(inode->i_sb, PTR_ERR(result));
121
122
123
124
125
126
127
128
129
130
131
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
132
133
134
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
135
		return 0;
136
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
137
138
139
140
141
142
143
144
145
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
146
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
147
				 int nblocks)
148
{
149
150
151
	int ret;

	/*
152
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
153
154
155
156
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
157
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
158
	jbd_debug(2, "restarting handle %p\n", handle);
159
160
161
	up_write(&EXT4_I(inode)->i_data_sem);
	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
	down_write(&EXT4_I(inode)->i_data_sem);
162
	ext4_discard_preallocations(inode);
163
164

	return ret;
165
166
167
168
169
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
Al Viro's avatar
Al Viro committed
170
void ext4_evict_inode(struct inode *inode)
171
172
{
	handle_t *handle;
173
	int err;
174

Al Viro's avatar
Al Viro committed
175
176
177
178
179
	if (inode->i_nlink) {
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

180
	if (!is_bad_inode(inode))
181
		dquot_initialize(inode);
182

183
184
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
185
186
187
188
189
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

190
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
191
	if (IS_ERR(handle)) {
192
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
193
194
195
196
197
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
198
		ext4_orphan_del(NULL, inode);
199
200
201
202
		goto no_delete;
	}

	if (IS_SYNC(inode))
203
		ext4_handle_sync(handle);
204
	inode->i_size = 0;
205
206
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
207
		ext4_warning(inode->i_sb,
208
209
210
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
211
	if (inode->i_blocks)
212
		ext4_truncate(inode);
213
214
215
216
217
218
219

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
220
	if (!ext4_handle_has_enough_credits(handle, 3)) {
221
222
223
224
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
225
			ext4_warning(inode->i_sb,
226
227
228
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
229
			ext4_orphan_del(NULL, inode);
230
231
232
233
			goto no_delete;
		}
	}

234
	/*
235
	 * Kill off the orphan record which ext4_truncate created.
236
	 * AKPM: I think this can be inside the above `if'.
237
	 * Note that ext4_orphan_del() has to be able to cope with the
238
	 * deletion of a non-existent orphan - this is because we don't
239
	 * know if ext4_truncate() actually created an orphan record.
240
241
	 * (Well, we could do this if we need to, but heck - it works)
	 */
242
243
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
244
245
246
247
248
249
250
251

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
252
	if (ext4_mark_inode_dirty(handle, inode))
253
		/* If that failed, just do the required in-core inode clear. */
Al Viro's avatar
Al Viro committed
254
		ext4_clear_inode(inode);
255
	else
256
257
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
258
259
	return;
no_delete:
Al Viro's avatar
Al Viro committed
260
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
276
 *	ext4_block_to_path - parse the block number into array of offsets
277
278
279
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
Dave Kleikamp's avatar
Dave Kleikamp committed
280
281
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
282
 *
283
 *	To store the locations of file's data ext4 uses a data structure common
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

306
static int ext4_block_to_path(struct inode *inode,
307
308
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
309
{
310
311
312
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
313
314
315
316
317
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

318
	if (i_block < direct_blocks) {
319
320
		offsets[n++] = i_block;
		final = direct_blocks;
321
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
322
		offsets[n++] = EXT4_IND_BLOCK;
323
324
325
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
326
		offsets[n++] = EXT4_DIND_BLOCK;
327
328
329
330
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
331
		offsets[n++] = EXT4_TIND_BLOCK;
332
333
334
335
336
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
337
		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
338
339
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
340
341
342
343
344
345
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

346
347
static int __ext4_check_blockref(const char *function, unsigned int line,
				 struct inode *inode,
348
349
				 __le32 *p, unsigned int max)
{
350
	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
351
	__le32 *bref = p;
352
353
	unsigned int blk;

354
	while (bref < p+max) {
355
		blk = le32_to_cpu(*bref++);
356
357
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
358
						    blk, 1))) {
359
			es->s_last_error_block = cpu_to_le64(blk);
360
361
			ext4_error_inode(inode, function, line, blk,
					 "invalid block");
362
363
364
365
			return -EIO;
		}
	}
	return 0;
366
367
368
369
}


#define ext4_check_indirect_blockref(inode, bh)                         \
370
371
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      (__le32 *)(bh)->b_data,			\
372
373
374
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
375
376
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      EXT4_I(inode)->i_data,			\
377
378
			      EXT4_NDIR_BLOCKS)

379
/**
380
 *	ext4_get_branch - read the chain of indirect blocks leading to data
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
405
406
 *
 *      Need to be called with
407
 *      down_read(&EXT4_I(inode)->i_data_sem)
408
 */
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
409
410
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
411
412
413
414
415
416
417
418
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
419
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
420
421
422
	if (!p->key)
		goto no_block;
	while (--depth) {
423
424
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
425
			goto failure;
426

427
428
429
430
431
432
433
434
435
436
437
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
438

439
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
440
441
442
443
444
445
446
447
448
449
450
451
452
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
453
 *	ext4_find_near - find a place for allocation with sufficient locality
454
455
456
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
457
 *	This function returns the preferred place for block allocation.
458
459
460
461
462
463
464
465
466
467
468
469
470
471
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
472
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
473
{
474
	struct ext4_inode_info *ei = EXT4_I(inode);
475
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
476
	__le32 *p;
477
	ext4_fsblk_t bg_start;
478
	ext4_fsblk_t last_block;
479
	ext4_grpblk_t colour;
480
481
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
497
498
499
500
501
502
503
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
504
505
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

506
507
508
509
510
511
512
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

513
514
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
515
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
516
517
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
518
519
520
521
	return bg_start + colour;
}

/**
522
 *	ext4_find_goal - find a preferred place for allocation.
523
524
525
526
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
527
 *	Normally this function find the preferred place for block allocation,
528
 *	returns it.
529
530
 *	Because this is only used for non-extent files, we limit the block nr
 *	to 32 bits.
531
 */
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
532
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
533
				   Indirect *partial)
534
{
535
536
	ext4_fsblk_t goal;

537
	/*
538
	 * XXX need to get goal block from mballoc's data structures
539
540
	 */

541
542
543
	goal = ext4_find_near(inode, partial);
	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
	return goal;
544
545
546
}

/**
547
 *	ext4_blks_to_allocate: Look up the block map and count the number
548
549
550
551
552
553
554
555
556
557
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
558
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
559
				 int blocks_to_boundary)
560
{
561
	unsigned int count = 0;
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
585
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
586
587
588
589
590
591
592
593
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
 *
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
 *	@blks:	on return it will store the total number of allocated
 *		direct blocks
 */
594
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
595
596
597
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
598
{
599
	struct ext4_allocation_request ar;
600
	int target, i;
601
	unsigned long count = 0, blk_allocated = 0;
602
	int index = 0;
603
	ext4_fsblk_t current_block = 0;
604
605
606
607
608
609
610
611
612
613
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
614
615
616
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
617
618
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
619
620
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
621
622
623
		if (*err)
			goto failed_out;

624
625
626
627
628
629
630
631
		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
			EXT4_ERROR_INODE(inode,
					 "current_block %llu + count %lu > %d!",
					 current_block, count,
					 EXT4_MAX_BLOCK_FILE_PHYS);
			*err = -EIO;
			goto failed_out;
		}
632

633
634
635
636
637
638
		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
639
640
641
642
643
644
645
646
647
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
648
			break;
649
		}
650
651
	}

652
653
654
655
656
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
657
658
659
660
661
662
663
664
665
666
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);
667
668
669
670
671
672
673
674
	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
		EXT4_ERROR_INODE(inode,
				 "current_block %llu + ar.len %d > %d!",
				 current_block, ar.len,
				 EXT4_MAX_BLOCK_FILE_PHYS);
		*err = -EIO;
		goto failed_out;
	}
675

676
677
678
679
680
681
682
683
684
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
685
686
687
688
			/*
			 * save the new block number
			 * for the first direct block
			 */
689
690
			new_blocks[index] = current_block;
		}
691
		blk_allocated += ar.len;
692
693
	}
allocated:
694
	/* total number of blocks allocated for direct blocks */
695
	ret = blk_allocated;
696
697
698
	*err = 0;
	return ret;
failed_out:
699
	for (i = 0; i < index; i++)
700
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
701
702
703
704
	return ret;
}

/**
705
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
706
707
708
709
710
711
712
713
714
715
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
716
 *	the same format as ext4_get_branch() would do. We are calling it after
717
718
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
719
 *	picture as after the successful ext4_get_block(), except that in one
720
721
722
723
724
725
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
726
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
727
728
 *	as described above and return 0.
 */
729
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
730
731
732
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
733
734
735
736
737
738
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
739
740
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
741

742
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
761
		err = ext4_journal_get_create_access(handle, bh);
762
		if (err) {
763
764
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
765
766
767
768
769
770
771
772
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
773
		if (n == indirect_blks) {
774
775
776
777
778
779
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
780
			for (i = 1; i < num; i++)
781
782
783
784
785
786
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

787
788
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
789
790
791
792
793
794
795
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
796
	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
797
	for (i = 1; i <= n ; i++) {
798
		/*
799
800
801
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
802
		 */
803
804
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
				 EXT4_FREE_BLOCKS_FORGET);
805
	}
806
807
	for (i = n+1; i < indirect_blks; i++)
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
808

809
	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
810
811
812
813
814

	return err;
}

/**
815
 * ext4_splice_branch - splice the allocated branch onto inode.
816
817
818
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
819
 *	ext4_alloc_branch)
820
821
822
823
824
825
826
827
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
828
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
829
830
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
831
832
833
{
	int i;
	int err = 0;
834
	ext4_fsblk_t current_block;
835
836
837
838
839
840
841
842

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
843
		err = ext4_journal_get_write_access(handle, where->bh);
844
845
846
847
848
849
850
851
852
853
854
855
856
857
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
858
			*(where->p + i) = cpu_to_le32(current_block++);
859
860
861
862
863
864
865
866
867
868
869
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
870
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
871
872
		 */
		jbd_debug(5, "splicing indirect only\n");
873
874
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
875
876
877
878
879
880
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
881
		ext4_mark_inode_dirty(handle, inode);
882
883
884
885
886
887
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
888
		/*
889
890
891
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
892
		 */
893
894
		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
				 EXT4_FREE_BLOCKS_FORGET);
895
	}
896
897
	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
			 blks, 0);
898
899
900
901
902

	return err;
}

/*
903
 * The ext4_ind_map_blocks() function handles non-extents inodes
904
 * (i.e., using the traditional indirect/double-indirect i_blocks
905
 * scheme) for ext4_map_blocks().
906
 *
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
923
 *
924
925
926
927
928
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
929
 */
930
931
static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
			       struct ext4_map_blocks *map,
932
			       int flags)
933
934
{
	int err = -EIO;
Aneesh Kumar K.V's avatar
Aneesh Kumar K.V committed
935
	ext4_lblk_t offsets[4];
936
937
	Indirect chain[4];
	Indirect *partial;
938
	ext4_fsblk_t goal;
939
940
941
942
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
943
	ext4_fsblk_t first_block = 0;
944

945
	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
946
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
947
	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
948
				   &blocks_to_boundary);
949
950
951
952

	if (depth == 0)
		goto out;

953
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
954
955
956
957
958
959

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		count++;
		/*map more blocks*/
960
		while (count < map->m_len && count <= blocks_to_boundary) {
961
			ext4_fsblk_t blk;
962
963
964
965
966
967
968
969

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
970
		goto got_it;
971
972
973
	}

	/* Next simple case - plain lookup or failed read of indirect block */
974
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
975
976
977
		goto cleanup;

	/*
978
	 * Okay, we need to do block allocation.
979
	*/
980
	goal = ext4_find_goal(inode, map->m_lblk, partial);
981
982
983
984
985
986
987
988

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
989
	count = ext4_blks_to_allocate(partial, indirect_blks,
990
				      map->m_len, blocks_to_boundary);
991
	/*
992
	 * Block out ext4_truncate while we alter the tree
993
	 */
994
	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
995
996
				&count, goal,
				offsets + (partial - chain), partial);
997
998

	/*
999
	 * The ext4_splice_branch call will free and forget any buffers
1000
	 * on the new chain if there is a failure, but that risks using
For faster browsing, not all history is shown. View entire blame